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Abstract: Secure transmission of information is one of the big challenges of knowledge society. Steganography 

is the transmission of secret messages embedded within other covering messages which conceal the existence of 

underlying messages (steganosis). In cryptography however, the presence of secret messages is known. We 

develop a new Steganography method based on Chaos, for concealing texts or images embedded within other 

transmitted images. Chaotic Torus Automorphisms are employed as mathematical randomization mechanisms 

for: i) the selection of the cover image pixels where the initial message (text or image) is inserted, ii) the 
encryption of the initial message (text or image). We have developed the software for efficient implementation of 

the algorithms in real-time.   
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1. INTRODUCTION 

Information hiding techniques are receiving much attention in the present Knowledge Society [1]. 
Cryptography and Steganography are the main ways for secure Communication of sensitive data. The 

word Cryptography, from the Greek words κρσπτός (hidden, secret) and γράυειν (writing), means the 

conversion of Messages to apparent nonsense, so that no one, apart from the intended recipient who 
holds the decoding technique, may recover the original message. The word Steganography, from 

the Greek words στεγανός (covered, concealed, protected) and γράυειν (writing), means hiding 

Messages within other Cover Messages, so that no one, apart from the intended recipient, may suspect 

the existence of the hidden message. The embedded message within the Cover message is called 
Steganogram and the construction of the Steganogram is called Steganosis. The recovery of the 

original message from the received Steganogram follows the reverse procedure. The term Message 

means according to information theory any digital content-dataset (text, image, sound, video and 
program). 

The differences of Steganography from Cryptography are summarized in Table 1.  

Table 1. Summary of the differences between Steganography and Cryptography. 

Steganography Cryptography 

The observer is not aware that a message passing 
The observer is aware that a message is passing but 

unauthorized access is prevented 

Less known technology Common technology 

Once detected, the message is known 
The More resistant the algorithms  to attacks, 

The higher the computational cost for cracking 

The secret message is not altered The secret message is significantly altered 

Steganography may include Cryptography by inserting an encrypted message into the Cover Message, 

thus using the advantages of both ways of securing Communication. Steganography involves three 

Stages, illustrated in Figure 1: 

Stage I: Steganosis: Preparation of the Steganogram by Embedding the Message into the Cover 

Message. 

Stage II: Transmission of the Steganogram through the Communication Channel. 
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Stage III: Recovery of the Message from the transmitted Steganogram by the Recipient. 

 

Figure 1. Steganography Diagram 

Stage II is analysed in the context of standard Information Theory [2-4] and is not specific to 

Steganography. Steganograms may be transmitted as postcards, digital images in emails, websites, 

smartphones. Stages I and III are realized by several techniques of Steganography. There are three 

main methods in the present literature [1, 5-10], namely: 

 Least Significant Bit replacement (LSB Stegranography) 

 Masking and Filtering  

 Algorithms and Transformations  

The idea of the Least Significant Bit Steganography is to embed the bits of the Secret Message 

directly into the least significant bit of the Cover, so that the image is minimally distorted (the original 

pixel values are not greatly modified) and the modified locations is not easy to identify (irregular 

placement). In the Algorithms and Transformations methods a transformed cover message 

(compressed) is modified. The Masking and Filtering methods insert the Message without modifying 

the Cover, as in the case of Watermarks. Several Steganography Softwares are available in:  

http://www.jjtc.com/Steganography/tools.html. 

The goal of this work is to employ Chaotic Torus Automorphisms, as effective and efficient 

mathematical randomization mechanisms for Messages represented as 2-dimensional Grids, for the 

realization of LSB Steganography with Message Encryption. After presenting the 5 parts of the 

Method in section 2, we present the Results with a simple example with Algorithms implementated in 

Java, in section 3.  

2. METHOD 

The method of constructing Steganography based on Chaotic Torus Automorphisms is presented in 5 

parts: 1) The framework of Algorithm of LSB Steganography, 2) The Chaotic Torus Automorphisms, 

being the underlying Mechamism,3) The Locations Specification with Chaotic Torus Automorphisms, 

4) The Encryption and Decryption with Chaotic Torus Automorphisms 5) The Embedding and 

Recovery of Messages. The 5 parts are discribed below. 

2. 1 The Least Significant Bit Steganography 

We present the details of Stages I and III of LSB Steganography in an algorithmic way:  

Stage I: Steganosis (LSB Steganography) 

http://www.jjtc.com/Steganography/tools.html


STEGANOGRAPHY BASED ON CHAOTIC TORUS AUTOMORPHISMS 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 51 

Step Ι.0: Input 

Step Ι.0.1: Specify the Message to be transmitted.  

Step Ι.0.2: Select the Cover Message     

Step Ι.0.3: Select the Key 

Step Ι.1: Encryption: Encrypt the Message 

Step Ι.2: Locations: Specify the Locations of the Cover Message, where the Message is to  

                                  be inserted. 

Step Ι.3: Insertion: Insert the (Encrypted) Message (Step Ι.1) into the Specified Locations  

                                (Step Ι.2) of the Cover Message. 

Step Ι.4: Output: The embedded Message within the Cover Message (Steganogram). 

Stage IΙΙ: Recovery (LSB Steganography)  

Step ΙΙΙ.0: Input 

Step ΙΙΙ.0.1: The Steganogram.  

Step ΙΙΙ.0.2: The Key (selected in Step Ι.0.3) 

Step ΙΙΙ.1: Locations: Specify the Locations of the Steganogram, where the Message has  

                                    been embedded. 

Step ΙΙΙ.2: Extraction: Extract the (Encrypted) Message from the Specified Locations  

                                        (Step ΙΙΙ.1) of the Steganogram. 

Step ΙΙΙ.3: Decryption: Decrypt the Extracted Message.  

Step ΙΙΙ.4: Output: The Message. 

The Specification of the Locations of the Cover Message, where the Message is to be inserted (Step 

I.2 and III.1) should be irregular for security. The usual location specification mechanisms of LSB 

Steganography are Random Number Generators (RNG) providing random sequences for any selected 

initial seed [5-10]. The Encryption and Decryption of the Message (Steps I.1 and III.3), are realized 

with Cryptographic methods [11-17]. If Encryption of the Message is not required, Steps I.1 and III.3 

are omitted. Chaotic Torus Automorphisms are effective and efficient mathematical randomization 

mechanisms for the realization of the two main steps of LSB Steganography, namely the specification 

of the locations of the Cover image (Steps I.2 and III.1) and the Encryption and Decryption (Steps I.1 

and III.3). The Encoder for embedding of the Message into the Cover Message and the Decoder for 

recovery of the concealed Message are analyzed in Fig. 2 and Fig. 3 correspondingly. 

 

Figure 2. The Encoder for embedding the Message into the Cover Message in LSB Steganography. 
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Figure 3. The Decoder for recovery of the concealed Message received as a Steganogram in LSB 

2.2 Chaotic Torus Automorphisms 

Chaotic maps are simple unstable dynamical systems with high sensitivity to initial conditions       

[18-20]. Small deviations in the initial conditions (due to approximations or numerical calculations) 

lead to large deviations of the corresponding orbits, rendering the long-term forecast for the chaotic 
systems intractable. This deterministic in principle, but not determinable in practice, dynamical 

behavior is in fact a local mechanism for Entropy Production. Chaotic systems are statistically 

characterized as Entropy producing deterministic systems [20-25]. In practice the required 
information for predictions after a (small) number of steps, called horizon of predictability [26], 

exceeds the available memory. As result, the computation time grows superexponentially. 

Shannon in his classic 1949 mathematical paper [2, 27] on Cryptography proposed chaotic maps as 

models - mechanisms for symmetric key encryption. More specifically he used the  Baker’s map, 
introduced earlier (1934) by Hopf [28], as a simple deterministic mixing model with statistical 

regularity producing 1bit per iteration. Of course neither Shannon, nor Hopf used the term Chaos 

which emerged forty years later [18-20].  

We consider the Automorphisms of the 2-Torus 0,1 0,1Y  defined by the formula: 

1

1

: :   1  , 
n n

n n

x x
S Y Y A mod n

y y
    (1)  

Where
a b

A
c d

 a real matrix with det(A) =1 or  ad bc 1   

The matrix of Baker’s Map is: 

2 0

0 1/ 2
A     (2)  

The restriction of an integer Torus Automorphism to the grid N N (mod N): 

'
mod mod

'

x x a b x
A N N

y y c d y
    (3)  

is a periodic transformation, called the N N  discretization of the integer automorphism.  

Integer Torus Automorphisms have been implemented on N N  grids and the periods have been 

related to the grid size N [29-37].  
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We shall apply Chaotic Torus Automorphisms to the specification of the locations of the Cover image 

(Steps I.2 and III.1) and for Encryption and Decryption (Steps I.1 and III.3).  

We select the Torus Automorphisms (3) with ad bc 1 , ie with matrix [38-39]:  

a
A

ad 1

1

d
    (4)  

The other class of Torus Automorphisms (3) with ad bc 1 can also be applied in the same way 

with similar results. 

2.3 Locations Specification with Chaotic Torus Automorphisms 

The Specification of the Locations of the Cover Message, where the Message is to be inserted (Step 

I.2 and III.1) should be irregular for security. The usual location specification mechanisms of LSB 
Steganography are Random Number Generators (RNG) providing random sequences for any selected 

initial seed [40-44] 

The usual mathematical Random Number Generators are simple chaotic (entropy producing) maps on 
real intervals. The simplest non-linear chaotic maps are constructed by applying the modulo operation 

on linear maps (progressions) [45]: 

1 a modN, 0t t tx x c x N     (5)  

Every selection of the initial value (seed) x0 produces a random sequence iteratively.  

We construct random sequences using 2 dimensional Chaotic Automorphisms with matrix (4), instead 
of the conventional RNG. The only difference is that the initial condition (Seed) is 2-dimensional: (x0, 

y0). The realization of Random Number Generators from Chaotic Torus Automorphisms, is 

summarized as follows: 

 The user is selecting the desired length  of the random sequence. 

 We specify the parameters a, d of (4) so that the Chaotic the printed sequences have period 

T>  [38]. 

 The produced sequences of length  are aperiodic with uniform distribution 

The user may also specify the parameters a, d of  (4),  so that the Automorphisms have moreover  any  
desired Entropy Production [39]. 

2.4 Encryption and Decryption with Chaotic Torus Automorphisms 

The message (image or text) is inserted on the N N  grid as the initial data set which is transformed 

by the selected integer Torus Automorphisms acting as encryption. Decryption is achieved by the 

application of the inverse automorphism to the transformed (encrypted) data set. The Encryption 
process involves 7 steps, summarized below: 

Algorithm A: Encryption 

Step A.0: Input  

Step A.0.1: Specify the Message (Text or/and Image) 

Step A.0.2: Specify the parameters a,d   , of (4) 

Step A.0.3: Specify the number of iterations n=1,2,3,… of (4) 

Step A.1: If the Message is image with equal height and width, then go to step Α.4. 

          Else add pixels so that the image has equal height and width and go to  

                     step A.4 

Step A.2: If the Message is text goto to Step A.3  

            Else goto step A.4.  
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Step A.3: Text Placement  

Step A.3.0: Place the text in a 2-dimensional grid so that each  
                    array element is a character  

Step A.3.1: Count all characters of text including line breaks (=N
1
) 

Step A.3.2: If N
1
 is a perfect square integer number then set M=N

1
.  

                    If  N
1
 is not a perfect square of an integer, then find the smallest integer  

                   M > N
1
 so that M is a perfect square.  

Step A.3.3: Set N M  

Step A.3.4: Create a character grid (NxN) and  
                          place the characters of the text inside the grid 

Step A.4: Apply the selected transformations for a number n of iterations on the grid  

for iterations=0 to n-1 

                   for i=0 to N-1  

    for j=0 to N-1 

                                
' a

   
' ad 1

1

d

i i

j j

x x
mod N

y y
 

Step A.5: If the Message is image then go to step A.7. 

Step A.6: Convert the modified table from of step A.2 to text. 

Step A.7: Return the transformed grid  

We remark that for text placement in Step A.3, we create a NxN grid of characters depending on the 

length of the text only.  

The Encryption Key is the selected sequence of transformations: 

21 1 1 2 2a ,  d ,  , a ,  d ,  ,..., a ,  d ,  , 1,2,3,...k k kEncryption Key n n n k    (6)  

Applying algorithm Α for the encrypted Message with the sequence of inverse transformations in the 

reverse order we obtain the original message. We replace the matrix 
a

ad 1 d

1
 of step A.4 with the 

inverse matrix 

1
a d

ad 1 d 1 ad

1 1

a
. The Decryption Key is simply the reverse of the 

Encryption Key: 

2 1 1 12 2a ,  d ,  ,..., a ,  d ,  , a ,  d ,  , 1,2,3,...k k kDecryption Key n n n k    (7)  

Therefore, the Decryption process is simple for those who hold the Encryption Key (6), but 

exponentially hard otherwise.  

2.5 Embedding and Recovery 

We denote by H,W the Height and the Width of the grid representing the Cover Message and by m 

the length of the Message. As each Symbol (character or color or pixel or vector) is represented by a 

given number ν of bits in the selected Symbol Encoding, the Cover Message and the Message are 

digitally represented by H W and m  bits correspondingly.   

According to the LSB Steganography, at most one (the Least Significant) digit of the Digital 

Representation of each symbol in the Cover Message may change. Therefore, Embedding the 
Message into the Cover message is possible, if and only if: 
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H W m    (8)  

If there are several layers of data upon the same H x W grid, formula (8) should be: 

number of layers H W m  

The theoretical maximum distortion of the Cover Message after embedding the secret Message is:  

100%
m

number of layers H W
    (9)  

The number ν of bits per symbol in text encoding in the ASCII representation and images is 8. The 

number of layers is in RGB representation of image encoding is 3 (one for each color), in CMYK 

representation of image is 4 (4 colors). Therefore the theoretical maximum distortion is:  

8
100%

m

H W
 for gray images and texts 

8
100%

3

m

H W
 for RGB images  

8
100%

4

m

H W
 for CMYK images. 

For example, the maximum distortion of a Cover RGB Image 400x600, after embedding a Message of 

length m=50 by changing only one of the 3 RGB colors is: 
8 50

100% 0,1041%
400 600

. However, if 

we change all 3 RGB colors, the distortion is one order of magnitude less:  

8 50
100% 0,0347%

3 400 600
 . 

In practice however, not all bits of the Digital representation of the Cover Message change, because 

50% of the bits of the possible locations in the Cover Message are expected to coincide with the 
Message bits on the average.  

Algorithm B: Embedding 

Step B.0: Input  

Step B.0.0: Specify the number ν of bits per symbol  

Step B.0.1: Specify the Message (Text or/and Image) 

Step B.0.2: Specify the Cover Message 

Step B.0.3: Specify the parameters a,d   , of  (4)  

Step B.0.4: Specify the number of iterations n=1,2,3,… of (4) 

Step B.0.5: Specify the Seed (initial condition) (x0, y0)  

Step B.1: Set m=the number of symbols of the Message 

Step B.2: Set N=min{ Height of the Cover Message, Width of the Cover Message}  

Step B.3: If N N m  go to Step B.4,  

                else go to Step B.0.2 (to specify a Larger Cover Message) 

Step B.4: If encryption is desired, then Encrypt the Message using Algorithm A.  

Step B.5: Convert each symbol of the Message (Encrypted or not) to the ν-bits digital  

                 representation.  

Step B.6: Compute m  locations of the Cover Message using the map (4) on the grid NxN. 
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Step B.7: Change the least significant digit of the each selected location by inserting a  

                corresponding digit of the Message 

Step B.8: Output: Steganogram.  

Algorithm C: Extracting 

Step C.0: Input  

Step C.0.0: Specify the number ν of bits per symbol  

Step C.0.1: Specify the Steganogram 

Step C.0.2: Specify the parameters a,d   , of  (4) 

Step C.0.3: Specify the number of iterations n=1,2,3,… of (4) 

Step C.0.4: Specify the Seed (initial condition) (x0, y0)  

Step C.1: Set N=min{ Height of the Steganogram, Width of the Steganogram }  

Step C.2: Compute the locations of the Message within the Steganogram using the map (4)  

                on the grid NxN 

Step C.3: Extract the digits of the computed locations from step C.2  

Step C.4: Retrieve the Message  

Step C.5: If decryption is desired, then Decrypt the Message using Algorithm A with the 

               decryption key (7).  

Step C.6: Output: the Message  

The Embedding Key consists of the parameters a,d   , of  (4), the number n of iterations of (4), 

and the Seed (initial condition) (x0, y0). The extracting Key is identical to the Embedding Key for the 

identifications of the Locations: 

0 0a,  d,  , x , yEmbedding Key Extracting Key n   (10)  

The Steganography Key consists of the Embedding Key (10) and the Encryption Key (6): 

,Steganography K Embedding Key Encryptioey n Key  

1 1 10 0 2 2 2a,  d,  , a ,  d ,  , a ,  d, x ,  ,..., a ,  d ,, y  k k kSteganography Ke ny n n n  
 (11)  

3. RESULTS AND DISCUSSION  

We demonstrate the method in one simple case. The secret Message of n=212 characters is: 

“Mathematical Week Thessaloniki March 2012 Ioannis Antoniou Nikolaos Farmakis Georgios 

Makris & Students of the Mathematics stand Annex mathematical Society Central Macedonia (C) 

George Makris.!”  

The Cover Message has Width W=640 and Height H=480 and is presented in left part of Fig. 4.  

The message was encrypted with one Torus Automorphism applying Algorithm A, with parametres 

a=1, d=4, iterated n=10 number of times. The Encryption Key (6) is: 1,  4,  10Encryption Key   

After encryption the Message was embedded in the Cover Message using the Torus Automorphism 

applying Algorithm B with parametres a=5, d=1 and Seed=(x0,y0)=(112,13),  iterated n=5 number of 

times. The Embedding Key (10) is: 5, , 112, 13 1,  5Embedding Key  

Collecting the above together we obtain the Steganography Key (11): 

5,  1,  5, 112, 13, 1,  4,  10Steganography Key  
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The theoretical distortion of the Cover Message after embedding the secret Message is: 

212 8
100% 0,5521%

640 480
. 

The Real distortion is obtained by counting the number of bits actually modified. 911 bits were 

modified from the 1696 locations. Therefore, the percentage of bits in the Cover image which were 

actually modified is 0,2965%. In other words the real distortion is 53,70% of the theoretical distortion. 

This difference of the real distortion from the theoretical distortion is expected because not all 

possible locations of Cover Message were modified by the insertion of the Message, as discussed in 

section 2.5.     

  

Figure 4. Cover Image (Left) and Steganogram (Right) 

The computations were implemented by the software “STEGANOGRAPHY-Χ” which we developed 

in Java, as this language is independent of the operating system and platform. Moreover the Java 

programs run on Windows, Linux, Unix and MacOS, mobile phones, Ipads, Playstations and other 

game consoles without any modification like compilation or changing the source code for each 
different operating system.  

The software has a graphical user interface, it is simple and user friendly. The main window is 

presented in Fig. 5. 

The developed software includes 3 packages (classes), namely: 

1) Crypto, implementing the Cryptography Algorithm A.  

2) TorusRandomGen, implementing the Random Number Generator with Chaos, section 2.4. 

3) Stegano, implementing the Embedding and the Extraction Algorithms B and C. 

These packages may be used jointly or separately by any other Java Application.  

  

Figure 5. The main window of STEGANOGRAPHY-X 

4. CONCLUSION  

The constructed Steganography Algorithm, for secure message transfer, is ready for development for 
sending messages (e-mails, cellphones, pcs, social networks) and digital authentication (hide 

copyright details in images, sound, video).  
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LSB Steganography with Chaotic Automorphisms is also applicable to Algorithms and 

Transformations methods with minor adaptations, because both Randomization and Cryptography are 
involved as well as to Masking and Filtering methods for the Cryptography part. We briefly mention 

the two main advantages and disadvantages of LSB Steganography [1, 5-10]: 

Advantage 1: Less chance for degradation of the original image. 

Advantage 2: The Hiding capacity is higher, i.e. more information can be stored in an image. 

Disadvantage 1: Less robust, the hidden data may be lost with image manipulation. 

Disadvantage 2: Hidden data can be easily destroyed by simple attacks on the Steganogram. 

Although Histogram Analysis [1, 7] can be employed to detect the possible existence of a hidden 

message in the Steganogram Image, it is practically impossible to extract the secret message 

(encrypted or not) for two reasons discussed in section 2.5:  

1) about 50% of the bits are modified. 

2) the embedding locations are randomly selected, therefore !m  attempts are required to extract 

the Message, if all the bits are modified. 
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