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Abstract: Our goal in this paper is to study of fixed point theorems in dislocated quasi-metric spaces and 

dislocated metric spaces which we can apply in a variety of different situations. This article can be considered 

as a continuation of the remarkable works of Hitzler et al [9], Zeyada et al. [6] and Geraghty [17].  In this 

article, we review briefly some generalizations of metric space with examples and we describe some properties, 

introduce new definitions and present some lemmas and propositions related to dislocated metric spaces and 

dislocated quasi-metric spaces. We also present some fixed point and common fixed point theorems for self-

mappings in a complete dislocated metric spaces and quasi-metric spaces under various contractive conditions 

and present some examples to illustrate the effectiveness of our results. 
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1. INTRODUCTION AND PRELIMINARES 

Fixed point theory is one of the most dynamic research subjects in nonlinear sciences. Regarding the 

feasibility of application of it to the various disciplines, a number of authors have contributed to this 

theory with a number of publications. One of the simplest and most useful results in fixed point theory 

is the Banach fixed point theorem: Let ��, ��be a complete metric space and T be self mapping of X 

satisfying 

                           ����, ��� ≤ 
���, �� for all �, � ∈ �,                                                                   (1.1) 

where 
 ∈ �
0,1�,
 then T has a unique fixed point. A mapping satisfying the condition (1.1) is called 

contraction mapping. As well as, there are a lot of extensions of this famous fixed point theorem in 

metric space which are obtained generalizing contractive condition, there are a lot of generalizations 

of it in different space which has metric type structure. In fact, Banach demonstrated how to find the 

desired fixed point by offering a smart and plain technique. This elementary technique leads to 

increasing of the possibility of solving various problems in different research fields. This celebrated 

result has been generalized in many abstract spaces for distinct operators. 

The concept of dislocated metric space was introduced by P. Hitzler [3] in which the self distance of 

points need not to be zero necessarily. They also generalized famous Banach’s contraction principle in 

dislocated metric space. Dislocated metric space play a vital rule in topology, logical programming 

and electronic engineering. F. M. Zeyada et al.[6] develops the notation of complete dislocated quasi 

metric spaces and generalized the result of Hitzler [3] in dislocated quasi metric space. In [2] C.T. 

Aage and J. N. Salunke proved dislocated quasi-metric version of Kannan mapping theorem.  Amini-

Haradi [7] re-introduced the dislocated space under the name of a metric-like space and proved some 

fixed theorems in this space. Very recently, Bennani et al. [8] established two new common fixed 

point theorems for four self maps on dislocated metric spaces, which improved the results of Panthi 

and Jha [10] without any continuity requirement. After F. M. Zeyada et al.[6] many papers have been 

published containing fixed point results in dislocated quasi metric spaces (see [1, 2, 4, 5, 11,12,13,14, 

29, 30, 31]). 
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Throughout this paper ℕ denotes the set of natural numbers, ℕ� = ℕ ∪ �0�, ℝ denotes the set of all 

real numbers, ℝ� = �0,∞�, ℝ�� = �0,∞�. Now, we will discuss difference between metric space and 

generalizations of metric space (quasi-metric, pseudo-metric, dislocated metric, dislocated quasi-

metric, partial metric, ultra metric).  

The following definition will be needed in the sequel. 

Definition 1.1 Consider a non-empty set X, whose elements will be refered to as points. A distance 

function on a set X is a function d: X × X → ℝ��  which assigns to each pair of points x and y in X a 

real number d�x, y�.We need the following conditions: 

(1) Non-negativity or Separation Axiom: ∀  x, y ∈ X, d�x, y� ≥ 0; 

(2) Identity of Indiscernible or Faithful : ∀  x, y ∈ X,   d�x, y� = 0 ⇔  x = y;  
(3) Small self-distance: ∀  x ∈ X, d�x, x� = 0; (But possibly d�x, y� = 0  for some distinct 

values x ≠ y).                                                                                                                  

(4) Indistancy Implies Equality: ∀  x, y ∈ X,   d�x, y� = 0 = d�y, x�  ⇒  x = y; 
(5) Equality : ∀  x, y ∈ X, x = y ⇔   d�x, x� = d�x, y� = d�x, y� ; 
(6) Small self-distances: ∀  x, y ∈ X, d�x, x� ≤ d�x, y�; 

(7) Symmetry: ∀  x, y ∈ X, d�x, y� = d�y, x�; 

(8) The Triangle Inequality:  ∀  x, y, z ∈ X, d�x, y� ≤ d�x, z� + d�z, y�;  

(9) The Triangle Inequality:  ∀  x, y, z ∈ X, d�x, y� ≤ d�x, z� + d�z, y� − d�z, z�; 

(10) Strong Triangle Inequality:  ∀  x, y, z ∈ X, d�x, y� ≤ max�d�x, z�, d�z, y��; 
If d satisfies conditions (1), (2), (7) and (8), then it is called a metric on X. If it satisfies conditions (1), 

(2), and (8), it is called a quasi-metric on X. If a metric d satisfies the strong triangle inequality (10), 

then it is called an ultra metric. If it satisfies conditions (1), (5), (6) and (9), it is called a partial 

metric.  If it satisfies conditions (1), (4), (7) and (8), it is called a dislocated metric (or simply d-

metric) on X and the pair �X, d� is called a dislocated metric space. Moreover "d�x, y� = 0 ⇒ x = y" 

when d is a d-metric. However "x = y" does not necessarily imply "d�x, y� = 0" when d is a d-metric. 

If d is a d-metric instead of a metric, it is possible that d�x, x� ≠ 0.As such these implications hold 

well in a d-metric space as well when "x ≠ y"  is replaced by d�x, y� ≠ 0. If it satisfies conditions (1), 

(4), and (8), it is called a dislocated quasi-metric (or simply d,-metric). 

Clearly every metric space is a dislocated metric space but the converse is not necessarily true as clear 

form the following example. 

Example 1.2 Let X = �0,1] define the distance function d ∶  X ×  X →  ℝ� by d�x, y�  =  max�x, y�. 

Clearly X is dislocated metric space but not a metric space.  

Also every metric space is dislocated quasi metric space but the converse is not true and every 

dislocated metric space is dislocated quasi metric space but the converse is not true as clear from the 

following example. 

Example 1.3 Let X =  �0, 1], we define the function d ∶  X ×  X →  ℝ� as d�x, y�  =  |x −  y|  + |x| 
for all x, y ∈  X. Clearly X is dq-metric space but not a metric space nor dislocated metric space. 

In our main work we will use the following definitions which can be found in [3, 6]. 

Definition 1.4 A sequence �x2� in d, -metric space �X, d� with respect to d,   is said to be  d,  -

converge to x ∈ X provided that  

                              d, − lim2→∞ d�x2, x� = d, − lim2→∞ d�x, x2� =  0 .  

In this case x is called the d, −limit of �x2� and we write d, − lim2→∞ x2 = x or  x2 → x  as n → ∞. 

Definition 1.5 A sequence �x2� in d −metric space �X, d� with respect to d  is said to be d –converge 

to x ∈ X provided that 
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                               d − lim2→∞ d�x2, x� = d − lim2→∞ d�x, x2� =  0 . 

In this case x is called the d −limit of �x2�  and we write d − lim2→∞ x2 = x or  x2 → x as n → ∞. 

Definition 1.6 We call a sequence �x2�  in d,-metric space (d-metric space) �X, d� is a d,-Cauchy  

( d -Cauchy) sequence provided that for all ϵ > 0  there exists n� = n��ϵ�  ∈ ℕ  such that     d�x2, x8� < ϵ, ∀ m, n ≥ n�. 

Definition 1.7 A d,-metric space (d-metric space) �X, d� is called d,-complete (d-complete) if every d,-Cauchy (d-Cauchy) sequence in X converges with respect to d  in X. 

We discuss a few more examples of quasi-metric spaces, d-metrics and d,-metrics. 

Example 1.8 Let X be the set of positive integers and define the non-negative real valued function d: X × X → ℝ�� by  

                             d�x, y� =   :    ;< ,                       if x < � 0,                        if x = y1,                         if x > � 
 
Note that d satisfies all the axioms of quasi-metric and therefore the pair �X, d� is a quasi-metric space 

but it is not a metric space because d is non-symmetric, i.e. d�x, y� ≠ d�y, x�. 
Example 1.9 Let  X = ℝ. Define  d: X × X → ℝ�� by 

                                    d�x, y� =   >   0,              if  x = y|y|          otherwise,
  
Then one can easily see that d is a quasi-metric and the pair �X, d� is a quasi-metric space. 

Example 1.10 Let X = �0,1]. Define d: X × X → ℝ�� by 

1. d�x, y� = F    y − x ,              if x ≤ y, 2�x − y�,             otherwise,
  
2.  d�x, y� = H    x − y ,              if x ≥ y, ;I �y − x�,             otherwise,
 

Then here also d is a quasi-metric and the pair �X, d� is a quasi-metric space. 

Example 1.11 Define d: ℝ × ℝ → ℝ�� by  d�x, y� = |x| + yI, then d is d,- metric on ℝ  which is not a 

d - metric and the pair �ℝ, d� is a d,- metric space. 

Example 1.12 Let X = ℝ��  and define a distance function d: X × X → ℝ��  such that  d�x, y� =max�x, y�. Then d is a d-metric on X and the pair �X, d� is a d-metric space.  

Example 1.13 Let X = > ;IJ |  n ∈ ℕ⋃�0�L. Define d: X × X → R��  by setting  d�x, y� = �x − y�I   for 

all x, y ∈ X.  Then d is a d-metric on X and the pair �X, d� is a d-metric space.   

Example 1.14 Let  X = ℝ�� . Then d: X × X → ℝ��  define by d�x, y� = ;I |x − y| + ;I �x + y�.  for all x, y ∈ R�� is a d-metric on R��  and the pair �X, d� is a d-metric space. 

Example 1.15 Let I be the set of all closed interval on  ℝ . Then d: I × I → ℝ��  defined 

by d��a, b], �c, d]�  = max�b, d� − min�a, c� for all �a, b], �c, d] ∈ I, is a d-metric on X and �I, d� is a 

d-metric space. 

Example 1.16 Let X = �0,1,2� and a mapping  d: X × X → ℝ�� be defined as  

                                            d�0,0� = d�1,1�  = d�2,2�  = 0,   
                                            d�0,1�  =  d�1,2�  =  d�0,2�  = 1,  
                                             d�1,0�  = d�2,1�  = d�2,0�  = 2.  
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Note that d satisfies all the axioms of d,-metric and the pair �X, d� is a d,-metric space but it is not a 

d-metric space because d is non-symmetric i.e. d�x, y� ≠ d�y, x�. 
Example 1.17 Let X = ℝ�� and define the function  d: X × X → ℝ�� by d�x, y�  =  |x − y| + |x| for all x, y ∈ X evidently d is d,-metric but not a metric nor d-metric. 
Example 1.18 Let X = �0,1�  and a mapping  d: X × X → ℝ��  be defined as d�1,1� = d�2,2� =0, d�1,2� = d�2,1� = 1. We observe that d satisfies all the axioms of d-metric and the pair �X, d� is a 

d-metric space. Also �X, d� is a d,-metric space.  

Definition 1.19 Let S and T be two self-mappings on a nonempty set X; then 

1) any point � ∈ � is said to be fixed point of � if �� = �; 

2) any point � ∈ � is called coincidence point of Q and � if Q� = �� and one calls R = Q� = �� 

a point of coincidence of Q and �; 

3) a point � ∈ � is called common fixed point of Q and � if Q� = �� = �. 

Lemma 1.20 (see [6]) Let �X, d� be a dq-metric space. If S ∶  � →  � is a contraction function, then ST��� � is a Cauchy sequence for each  x� ∈ X . 

Lemma 1.21 (see [6]) Every subsequence of d,-convergent sequence to a point x�  is d,- convergent 

to x� . 
Theorem 1.22 (see [6]) Let �X, d� be a d,-metric space and let �: � → � be continuous contraction 

mapping. Then � has a unique fixed point. 

Theorem 1.23 (see [19]) Let �X, d� be a complete d-metric space and let �: � → � be a contraction. 

Then � has a unique fixed point. 

2. MAIN RESULT 

In this section, first we explore the properties of dislocated metric space and dislocated quasi-metric 

space.  

Proposition 2.1 Every converging sequence in a d-metric space is a Cauchy sequence.  

Proof Let �x2� be a sequence which converges to some  x, and let ϵ > 0 be arbitrarily chosen. Then 

there exists n� ∈ ℕ with d�x2, x� < UI  for all  n ≥ n� . For m, n ≥ n�,  we then obtain  d�x8, x2� ≤ d�x8, x� + d�x, x2� < UI  + UI  = ϵ. Hence �x2�  is a Cauchy sequence.  

Proposition 2.2 Limits in d-metric spaces are unique.  

Proof Let x∗ and y∗ be limits of the sequence �x2� .Then d�x2, x∗� → 0 and d�x2, y∗� → 0  as n → ∞. 

By the triangle inequality, it follows that d�x∗, y∗� ≤ d�x∗, x2� + d�x2, y∗� = d�x2, x∗� + d�x2, y∗� →0 as n → ∞. Hence d�x∗, y∗� = 0 and so x∗ = y∗.  
Proposition 2.3 Limits in d,-metric spaces are unique.  

Proof Let x∗ and y∗  be limits of the sequence �x2� .Then x2 → x∗  and x2 → y∗  as n → ∞. By the 

triangle inequality, it follows that  d�x∗, y∗� ≤ d�x∗, x2� + d�x2, y∗� . Letting  n → ∞ , we obtain d�x∗, y∗� ≤ d�x∗, x∗� + d�y∗, y∗�.  Similarly d�y∗, x∗� ≤ d�x∗, x∗� + d�y∗, y∗� . Hence |d�x∗, y∗� −d�y∗, x∗�| ≤ 0  and so  d�x∗, y∗� = d�y∗, x∗� . Also d�x∗, y∗� ≤ d�x∗, x2� + d�x2, y∗� → 0  as n → ∞ 

and therefore d�x∗, y∗� = d�y∗, x∗� = 0. It follows that x∗ = y∗.  
Now, we introduce the following. 

Definition 2.4 Let �X, d� is a d-metric space. Given a point x� ∈ X and a real number ϵ > 0. We 

define three types of sets. 

Open Ball:             ℬUX�x�� = � x ∈ X  |  d�x�, x� < ϵ � 

Closed Ball:          ℬYUX�x�� = � x ∈ X  |  d�x�, x� ≤ ϵ � 

Sphere:                  ZUX�x�� = � x ∈ X  |  d�x�, x� = ϵ � 
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In all the above three cases  x� is called the centre and  ϵ the radius. We observe that 

                                     ZUX�x�� = ℬYUX�x�� − ℬUX�x��.  

If  �X, d� is a d,-metric space. Given a point  x� ∈ X and a real number ϵ > 0. Then  

Open Ball:             ℬUX[�x�� = � x ∈ X  | min�d�x�, x�, d�x, x��� < ϵ � 

Closed Ball:           ℬYUX[�x�� = � x ∈ X  |  min�d�x�, x�, d�x, x��� ≤ ϵ � 

Sphere:                   ZUX[�x�� = � x ∈ X  |  min�d�x�, x�, d�x, x��� = ϵ � 

In all the above three cases x� is called the centre and ϵ the radius. Note that 

                                       ZUX[�x�� = ℬYUX[�x�� − ℬUX[�x��.  

There is no guarantee that  x ∈ ℬUX[�x�, for example, in example 1.14, if  x > 0 and y > 0, then 1 ∉ℬ]̂X[
. 

Definition 2.5 Neighbourhood is an (open ϵ −) ball in a d-metric space �X, d� with center x ∈ X is a 

set _UX�x� = �y ∈ X | d�x, y� < ϵ�  where ϵ > 0 .  

Note that an (open ϵ −) ball may be empty in d-metric space. In fact, the centre of an (open ϵ −) ball 

is contained in the (open ϵ −) ball itself; the point may be dislocated from the ball. 

In a d, -metric space  �X, d� , a neighbourhood is an (open  ϵ − ) ball with center x ∈ X is a set _UX[�x� = �y ∈ X  |  min�d�x, y�, d�y, x�� < ϵ�  where ϵ > 0. 

Now, we give the following two Propositions. 

Proposition 2.6 Let �X, d� be a dislocated metric space. Then for all x ∈ X.  d�x, x� = 0 iff _UX�x� ≠∅. for all ϵ > 0 and x ∈ X.    
Proof Since   _UX�x� = �y ∈ X  |  d�x, y� < ϵ�,  where  ϵ > 0, is an open ϵ −ball in a d-metric space �X, d� with center x ∈ X. Suppose small self distance:   d�x, x� = 0  for all x ∈ X and ϵ > 0 be given, 

then   d�x, x� < ϵ ⇒ x ∈ _UX�x� . Hence  _UX�x� ≠ ∅  for all and x ∈ X .  Conversely, suppose that _UX�x� ≠ ∅  for all ϵ > 0.  We know that _UX�x� =   �y ∈ X  | d�x, y� < ϵ� . Then  ∃  y ∈ X  such 

that   d�x, y�  = r <  ϵ.  By using triangle inequality and symmetry property, it follows that d�x, x� ≤d�x, y� + d�y, x� = d�x, y� + d�x, y� = 2d�x, y� = 2r and hence for all ϵ > 0, ��x, x� < ϵ . Therefore  d�x, x� = 0.  
Proposition 2.7 Let �X, d� be a d-metric space. Then d is a metric if and only if for all x ∈ X and all 

ε > 0, _UX�x� ≠ ∅. 
Proof Let d is a metric. We then have  d�x, x� = 0  ∀ x ∈ X . By Proposition �2.6� , it follows 

that    _UX�x� ≠ ∅ . Conversely, let   _UX�x� ≠ ∅  for all x ∈ X  and all  ε > 0.  Since   _UX�x� = �y ∈ X|d�x, y� < ϵ�. Then d�x, x� < ϵ. Hence for all   x ∈ X, d�x, x� = 0, and then d�x, y� = 0 if and 

only if x = y. Also symmetric and triangular properties hold. Hence d is a metric. 

Definition 2.8 Let  X = �X, d� and  Y = �Y, dd� be two metric spaces. A mapping f: X → Y is said to be 

continuous at a point x� ∈ X, if for every ϵ > 0, there is a δ > 0 such that dd�fx, fx� � < ϵ for all x 

satisfying  d�x, x� � < δ. Mapping f is said to be continuous, if it is continuous at every point of X.    

Theorem 2.9 A mapping S: � → f  of a d-metric space �X, d�  into a d-metric space �Y, dd�  is 

continuous at a point �� ∈ � if and only if  �T → �� implies that S�T → S�� . 
Proof Assume S to be continuous at x�. Then for given ϵ > 0, there is a  δ > 0 such that  d�x, x�� < δ 

implies dd�fx, fx�� < ϵ. Let �x2� be a sequence in X such that x2 → x�. Then there is a  n�  such that for 

all n > n�, we have d�x2, x�� < δ. Hence for all n > n�, dd�fx2, fx�� < ϵ. By definition this means 

that fx2 → fx�. Conversely we assume that T is continuous at x�. suppose this is false. Then there is an  ϵ > 0   such that for every δ > 0, there is an x ≠ x�  satisfying d�x, x�� < δ   but  dd�fx, fx�� ≥ ϵ  .        
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In particular for  δ = ;2 , there is an x2  satisfying d�x2, x�� < ;2 , but  dd�fx2, fx�� ≥ ϵ. Clearly x2 →x� but �fx2� does not converge to fx�. This contradicts fx2 → fx� and proves the theorem. 

Now, we are ready to state and prove our first main results.  

Theorem 2.10 Let τ: ℝ�� → �0, 2h;� be decreasing function. Let �X, d� be a complete d-metric space 

and let T: X → X be a self-mapping such that  

                            d�Tx, Ty� ≤ τjd�x, y�kjd�x, Tx� + d�y, Ty�k                                                        (2.1) 

for all x, y ∈ X. If moreover, T is continuous or τ is a constant function then T has a unique fixed point x∗ ∈ X. 
Proof Let x� be an arbitrary point in X and we set x2�; = Tx2 for each n ∈ ℕ�. We may assume that d�x2, x2�;� ≠ 0 for each n ∈ ℕ� . Then by (2.1), we get 

                      d�x2�;, x2�I� = d�Tx2, Tx2�;�                                                                                   (2.2) 

                                              ≤ τjd�x2, x2�;�kjd�x2, Tx2� + d�x2�;, Tx2�;�k                                               

                                              = τjd�x2, x2�;�kjd�x2, x2�;� + d�x2�;, x2�I�k  
                                              ≤ 2h;jd�x2, x2�;� + d�x2�;, x2�I�k  
Hence,  d�x2�;, x2�I�  ≤ d�x2, x2�;�  for each n ∈ ℕ�. So �d�x2, x2�;�� is a nonnegative decreasing 

sequence. Hence, there exists γ ≥ 0 such that lim2→m d�x2 x2�;� = γ. We claim that γ = 0. Suppose, 

on the contrary, that γ > 0. Then due to (2.2), we have 

                       d�x2�;, x2�I� ≤ τ�γ�jd�x2, Tx2� + d�x2�;, Tx2�;�k                                               (2.3) 

                                               = τ�γ�jd�x2, x2�;� + d�x2�;, x2�I�k 

and consequently γ ≤ 2τ�γ�γ, which is impossible since τ�γ� < 2h;. This proves that γ = 0. Now we 

will show that �x2� is a Cauchy sequence. From (2.1), we get 

                               d�x2, x8� = d�fx2, fx8�                                                                                      (2.4) 

                                                ≤ ;I �d�x2, fx2� + d�x8, fx8�] 
                                                 = ;I �d�x2, x2�;� + d�x8, x8�;�] 
There exist an  n� such that for o, n ≥ n�, ���T, �T�;� < p  and ���q, �q�;� < p . Hence  

                               ���T, �q� ≤ ;I �p + p� = p                                                                                  (2.5) 

for all o, n ≥ n�. This forces that  ��T� is Cauchy sequence and view of completeness of X, there 

exists an �∗ ∈ �  such that �T → �∗. We can check that ��∗ = �∗. If T is continuous, then  

                                 ��∗ = ��rsoT→m �T� = rsoT→m ��T                                                              (2.6) 

                                        = rsoT→m �T�; =  �∗   
and �∗ is a fixed point of T. On the other hand,  if  t is a constant. Then, we have 

                   ���∗, ��∗� ≤ ���∗, �T�;� + ���T�;, ��∗�                                                                     (2.7) 

                                      = ���∗, �T�;� + ����T, ��∗� 

                                      ≤ ���∗, �T�;� + t j���T, �T�;� + ���∗, ��∗�k 

Letting n → ∞, we get  

                    ���∗, ��∗� ≤ t ���∗, ��∗�.                                                                                            (2.8) 

Similarly, 

                   ����∗, �∗� ≤ ����∗, �T�;� + ���T�;, �∗�                                                                     (2.9) 

                                      = ����∗, ��T� + ���T�;, �∗� 
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                                      ≤ t j���∗, ��∗� + ���T, ��T�k + ���T�;, �∗� 

                                     = t j���∗, ��∗� + ���T, �T�;�k + ���T�;, �∗� 

Letting n → ∞, we get 

                 ����∗, �∗� ≤ t j���∗, ��∗�k                                                                                          (2.10) 

Hence |���∗, ��∗� − ����∗, �∗�| ≤ 0. Thus, ���∗, ��∗� = 0 = ����∗, �∗� and so ��∗ = �∗.  Finally, 

to prove the last part of the theorem. Let us assume that  ��∗ = �∗, ��∗ = �∗,   �∗ ≠ �∗,   �∗, �∗ ∈ �. 
First we show that ���∗, �∗� = ���∗, �∗� = 0. From condition (2.1), we have  

                      ���∗, �∗� ≤ tj���∗, �∗�kj ���∗, �∗� + ���∗, �∗�k                                                    (2.11) 

                                      = 2tj���∗, �∗�k���∗, �∗� 

Since t: ℝ�� → �0, 2h;� be decreasing function, so the above inequality is possible if ���∗, �∗� = 0. 

Similarly we can show that ���∗, �∗� = 0. Now we consider 

                        ���∗, �∗� = ��T�∗, ��∗�                                                                                          (2.12) 

                                        ≤ tj���∗, �∗�kj ���∗, � �∗� + ���∗, ��∗�k 

                                        ≤ tj���∗, �∗�kj ���∗, �∗� + ���∗, �∗�k 

This shows that ���∗, �∗� = 0 and �∗ = �∗, which proves the uniqueness of fixed point of �.   

Now, we furnished an example to support our main result (Theorem 2.10). 

Example 2.11 Let � = �0,1]. Define �: � × � → ℝ��  by���, �� = � + �. Then d is dislocated metric 

on  �  and the pair ��, �� is a complete dislocated metric space. Also, we define  t: �0, ∞� →�0, 2h;�  by  t�v� = �v + 4�h; and  �: � → � by ���� = xy. Obviously, t is a nonnegative decreasing 

function. Also the map T is continuous in  �. For all �, � ∈ �, we obtain   

                �jS���, S���k ≤ tj���, ��kj���, S�� + ���, S��k 

             ⇒           � zxy , {y| ≤ t�� + ��. }� z�, xy| + � z�, yy|~ 

             ⇒                xy + {y ≤ ;x�{��  . z� + xy + � + {y|    

             ⇒                  x�{y ≤ �y �x�{�x�{��      ⇒     1 ≤ 8 z ;x�{��|  

             ⇒      � + � + 4 ≤ 8                ⇒          � + � ≤ 4 ,     ∀ �, � ∈ �. 

Clearly T satisfies the condition (2.1). Thus T satisfies all the hypotheses of Theorem 2.10 and �∗ = 0 

is the unique fixed point of T. 

In [25] Jungck introduced the concept of commuting maps. In [26] Jungck introduced the concept of 

compatible mappings which generalize the concept of commuting maps. Jungck in [27] further 

generalized the concept of compatible maps as follows.  

Definition 2.12 Let Q and � be two mappings from a metric space ��, �� into itself. Then, S and T are 

said to be weakly compatible if they commute at their coincidence points; that is, Q� =  �� for some � ∈ � implies Q�� =  �Q�. 

Now, we have the following key lemma. 

Lemma 2.13 Let � be a non-empty set and the mappings Q, �, S ∶  � →  � have a unique point of 

coincidence �  in X. If �Q, S�  and ��, S �  are weakly compatible, then Q, �  and S  have a unique 

common fixed point. 

Proof Since � is point of coincidence S, T and f. Therefore, � =  SR =  QR =  �R for some R ∈  �. 

By weakly compatibility of �Q, S � and ��, S � we have Q� =  QSR =  SQR =  S�  and�� =  �SR =
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 S�R =  S�. It implies that Q� =  �� =  S� =  � (say). Then � is a point of coincidence of Q, � and S. Therefore,  � =  � by uniqueness. Thus � is a unique common fixed point of Q, � and S . 
Our next theorem is about a common fixed point for three self-mapping satisfying contraction type 

condition in the context of d-metric space. 

Theorem 2.14 Let (X, d) be a dislocated metric space and the mappings Q, �, S ∶  � → � satisfy: 

                                                  ��Q�, ���  ≤ 
��S�, S��                                                               (2.13) 

for all �, � ∈ � where 0 ≤ 
 <  1. If Q���  ∪  ���� ⊆ S��� and S��� is a complete subspace of X, 

then S, T and f have a unique point of coincidence. Moreover if �Q, S�  and �T, S �  are weakly 

compatible, then S, T and f have a unique common fixed point. 

Proof Let �� ∈ �  be arbitrary. Choose a point �;  in X such that  S�;  =  Q�� . This can be done 

since Q��� ⊆ S���. Similarly, choose a point �I in X such that S�I  =  ��;. Continuing this process 

and having chosen �T in X, we obtain �T�; in X such that 

                                         S�I��; =  Q�I�,   S�I��I = ��I��;, � = 0, 1, 2, … ..                           (2.14) 

From (2.13), we get 

                     ��S�I��;, S�I��I� = ��Q�I�, ��I��;� ≤ 
��S�I�, S�I��;�                                   (2.15) 

Similarly, 

                     ��S�I��I, S�I���� = ��Q�I��;, ��I��I� ≤ 
��S�I��;, f�I��I�                            (2.16) 

Now by induction, we obtain for each � = 0, 1, 2, … .. 
                    ��S�I��I, S�I���� ≤ 
I��I��S��, S�;�                                                                    (2.17) 

Let 

                     �T = S�T, n = 0, 1, 2, …                                                                                             (2.18) 

Now for all n, we have 

                 ���T�;, �T�I� ≤ 
���T, �T�;� ≤ ⋯ ≤ 
T�;����, �;�                                                  (2.19) 

Now for any m > n, 

             ���q, �T� ≤ ���T, �T�;� + ���T�;, �T�I� + ⋯ + ���qh;, �q�                                       (2.20) 

                              ≤ �
T + 
T�; + ⋯ + 
qh;�����, �;� 

                              ≤ ��;h� ����, �;� 

Assume that ����, �;� > 0. Letting n → +∞, ��T� is a Cauchy sequence. Also, if ����, �;� = 0, then ���q, �T� = 0 for all o >  n and hence ��T� is a Cauchy sequence in X. Since S��� is complete, 

there exists R, � ∈  �  such that  �T → � =  SR.   Now, we show that �  is a common point of 

coincidence of S, T and f that is  � =  SR =  QR =  �R. 

                    ��SR, QR�  ≤ ��SR, �IT�I�  +  �� �IT�I, QR�                                                             (2.21) 

                                      ≤ ���,  �IT�I�  +  ����IT�;, QR� 

                                      ≤ ���,  �IT�I�  + 
 ��S�IT�;, SR� 

                                      ≤ ���,  �IT�I�  + 
 �� �IT�;, ��   → 0 as n→ ∞ 

Therefore,  ��SR, QR�  =  0. Similarly,  

                    ��QR, SR�  ≤ ��QR, �IT�I�  +  �� �IT�I, SR�                                                             (2.22)   

                                      ≤ ��QR, ��IT�;�  +  ���IT�I, �� 

                                      ≤ 
��SR, S�IT�;�  +  ���IT�I, �� 

                                      ≤ 
���,  �IT�;�  +  �� �IT�I, ��   → 0 as n→ ∞. 

Hence SR =  QR. Similarly, by using 
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                     ��SR, �R�  ≤  ��SR,  �IT�;�  +  �� �IT�;, �R�,                                                         (2.23) 

we can show that SR =  �R, it implies that � is a common  point of coincidence of Q, � and S. Now 

we show that f, S and T have unique point of coincidence. For this, assume that there exists another 

point �∗ in � such that �∗ =  SR∗ =  QR∗ =  �R∗ for some R∗ in  �. Now,  

                          ���, �∗�  =  ��QR, �R∗� ≤ 
��SR, SR∗� ≤ 
���, �∗�                                           (2.24) 

and 

                          ���∗, ��  =  ��QR∗, �R� ≤ 
��SR∗, SR� ≤ 
���∗, ��.                                          (2.25) 

This implies that |���, �∗� − ���∗, �� | ≤ 
|���, �∗� − ���∗, v� |  that is, �1 − 
� |���, �∗� −���∗, �� | ≤ 0. Thus  ���, �∗� = ���∗, �� = 0 and so �∗ = �. This implies that �∗= v. If �Q, S� and ��, S� are weakly compatible, by Lemma 2.13, S, T and f have a unique common fixed point. 

Put Q = � and S = � an identity mapping in above theorem 2.14 yields Theorem 1.22. Taking Q = � 

in theorem 2.14 yields Corollary 2.15 

Corollary 2.15 Let (X, d) be a complete dislocated metric space and the mapping  � ∶  � → � satisfy: 

                                                     ����, ���  ≤ 
��S�, S��                                                            (2.26) 

for all �, � ∈ � where 0 ≤ 
 <  1. If  ���� ⊆ S��� and f(X) is a complete subspace of �, then � and S have a unique point of coincidence. Moreover, if ��, S � is weakly compatible, then � and S have a 

unique common fixed point. 

Theorem 2.16 Let ��, �� be a dislocated metric space and the mappings Q, �, S ∶  � → � satisfy: 

                                        ��Q�, ���  ≤ 
���S�, Q�� + ��S�, ����                                                 (2.27) 

for all �, � ∈ � where 0 ≤ 
 <  1. If Q���  ∪  ���� ⊆ S��� and f(X) is a complete subspace of �, 

then Q, �  and S  have a unique point of coincidence. Moreover if �Q, S �  and ��, S �  are weakly 

compatible, then S, T and f have a unique common fixed point. 

Proof Let �� ∈ �  be arbitrary. Choose a point �;  in X such that  S�;  =  Q�� . This can be done 

since Q��� ⊆ S���. Similarly, choose a point xI in X such that S�I  =  ��;. Continuing this process 

and having chosen �T in X. We obtain �T�; in X such that 

                              S�I��; =  Q�I�,   S�I��I = ��I��;, � = 0, 1, 2, … ..                                      (2.28) 

From (2.27) we get 

                  ��S�I��;, S�I��I� = ��Q�I�, ��I��;�                                                                        (2.29) 

                                                  ≤ 
���S�I� , Q�I�� + ��S�I��;, ��I��;��   

                                                  = 
���S�I� , S�I��;� + ��S�I��;, S�I��I�� 

That is,      ��S�I��;, S�I��I� ≤ �;h� ��S�I� , S�I��;� 

Similarly, 

                  ��S�I��I, S�I���� = ��Q�I��;, ��I��I�                                                                     (2.30) 

                                                  ≤ 
���S�I��;, Q�I��;� + ��S�I��I, ��I��I�� 

                                                   = 
���S�I��;, S�I��I� + ��S�I��I, S�I����� 

That is,         ��S�I��I, S�I���� ≤ �;h� ��S�I��;, S�I��I�. 

Now by induction, we obtain for each � = 0, 1, 2, … .. 
                   ��S�I��;, S�I��I� ≤ �;h� ��S�I� , S�I��;�                                                                 (2.31) 

                                                   ≤ z �;h�|I ��S�I�h;, S�I�� 

                                                    : 
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                                                   ≤ z �;h�|I��; ��S��, S�;� 

and 

                   ��S�I��;, S�I��I� ≤ z �;h�|I��I ��S��, S�;�                                                             (2.32) 

Let 

                  �T = S�T, n = 0, 1, 2, … and  
�;h� = �                                                                          (2.33) 

Now for all n, we have 

                   ���T�;, �T�I� ≤ ����T, �T�;� ≤ ⋯ ≤ �T�;����, �;�                                                (2.34) 

Now for any m > n, 

                          ���q, �T� ≤ ���T, �T�;� + ���T�;, �T�I� + ⋯ + ���qh;, �q�                          (2.35) 

                                           ≤ ��T + �T�; + ⋯ + �qh;�����, �;� 

                                           ≤ ��;h� ����, �;� 

Assume that ����, �;� > 0. Letting n → ∞, ��T� is a Cauchy sequence. Also, if ����, �;� = 0, then ���q, �T� = 0 for all o >  n and hence ��T� is a Cauchy sequence in X. Since S��� is complete, 

there exists R, � ∈  �  such that  �T → � =  SR.  Now, we show that v is a common point of 

coincidence of S, T and f that is  � =  SR =  QR =  �R. 

                   ��SR, QR�  ≤ ��SR, �IT�I�  +  �� �IT�I, QR�                                                              (2.36)   

                                     ≤ ���,  �IT�I�  +  ��QR, ��I2�;� 

                                     ≤ ���,  �IT�I�  + 
 ���SR, QR� + ��S�IT�;, ��IT�;�� 

                                     ≤ ���,  �IT�I�  + 
 ���SR, QR� + ��S�IT�;, S�IT�I��  
                                     ≤ ���,  �IT�I�  + 
 ����, QR� + �� �IT�;,  �IT�I�� 

Letting n→ ∞, we have 

                  ���, QR�  ≤ 
 ���, QR�                                                                                                   (2.37) 

Therefore, ���, QR�  =  0. Similarly,  

                   ��QR, SR�  ≤ ��QR, �IT�I�  +  �� �IT�I, SR�                                                              (2.38)  

                                      ≤ ��QR, ��IT�;�  +  ���IT�I, �� 

                                      ≤ 
���SR, QR� + ��S�IT�;, ��IT�;�� +  ���IT�I, �� 

                                      ≤ 
����, QR� + ���IT�;, �IT�I�� +  ���IT�I, �� 

Letting n→ ∞, we have 

                      ��QR, ��  ≤ 
 ���, QR�                                                                                               (2.39) 

Hence, |���, QR� − ��QR, ��| ≤  0 and then ���, QR� = ��QR, �� = 0. So  � = SR =  SR. Similarly, 

by using 

                 ��SR, �R�  ≤  ��SR,  �IT�;�  +  �� �IT�;, �R�,                                                             (2.40) 

we can show that SR =  �R, it implies that � is a common  point of coincidence of Q, � and S. Now 

we show that f, S and T have unique point of coincidence. For this, assume that there exists another 

point �∗  in � such that �∗ =  SR∗ =  QR∗ =  �R∗  for some R∗  in  � . First we show that          ���, �� = ���∗, �∗� = 0. From condition (2.27), we have  

                   ���, ��  =  ��QR, �R�                                                                                                    (2.41) 

                                 ≤ 
���SR, QR� + ��SR, �R��  

                                 ≤ 
����, �� + ���, ��� = 2
���, �� 
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Since 0 ≤ 
 < ;I, so the above inequality is possible if ���, ��  = 0. Similarly we can show that ���∗, �∗� = 0. 

 Now we consider 

                     ���, �∗�  =  ��QR, �R∗�                                                                                              (2.42) 

                                    ≤ 
����, �� + ���∗, �∗��          

The above inequality is possible if  ���, �∗� = 0. which implies that � = �∗. If �Q, S� and ��, S � are 

weakly compatible, by Lemma 2.13, Q, � and S have a unique common fixed point. 

Putting Q = � and S = � an identity mapping in the above Theorem 2.16 yields Corollary 2.17. 

Corollary 2.17 Let ��, �� be a complete dislocated metric space and the mappings �, S ∶  � → � 

satisfy: 

                                    ����, ���  ≤ 
����, ��� + ���, ����                                                         (2.43) 

for all �, � ∈ � where 0 ≤ 
 <  1. Then T has a unique fixed point. 

Putting Q = � in the above Theorem 2.16 yields Corollary 2.18. 

Corollary 2.18 Let ��, �� be a dislocated metric space and the mappings Q, �, S ∶  � → � satisfy: 

                                    ����, ���  ≤ 
���S�, ��� + ��S�, ����                                                    (2.44) 

for all �, � ∈ � where 0 ≤ 
 <  1. If ���� ⊆ S��� and f(X) is a complete subspace of �, then � and S have a unique point of coincidence. Moreover if ��, S � is weakly compatible, then T and f have a 

unique common fixed point. 

Now, we present a fixed point theorem for mappings satisfying Geraghty-type contractive conditions 

in dislocated quasi-metric space. 

Let Z  denotes the class of the real functions �: ℝ�� → �0,1�  satisfying the condition ��vT� →1 implies vT → 0. An example of a function in Z may be given by ��v� = �h��v + 1�h; for  v > 0 

and  ��0� ∈ �0,1�  . Similarly the function  �: ℝ�� → �0,1�   defined by  ��v� = �h�  for  v > 0 

and ��0� ∈ �0,1� , belongs to the class Z.  

Observe that we do not assume that � is continuous in any sense. We only require that if � gets here 

one, it does so only near zero. In an attempt to generalize the Banach contraction principle, Michael 

A. Geraghty proved in 1973 the following.  

Theorem 2.19 [17]Let �: � → � be a contraction on a complete metric space satisfying 

                                 ����, ��� ≤ �j���, ��k���, ��,                                                                     (2.45) 

where � ∈  Z .Then for any choice of initial point  ��, the iteration �T = ��Th; for  n > 0 , converges 

to the unique fixed point  �m of T in X. 

We then have the following theorem. 

Theorem 2.20 Let ��, �� be a complete dislocated quasi-metric space  and  �: � → � be a self map. 

Suppose that there exists � ∈ Z such that  

                                          ����, ��� ≤ �j���, ��k���, ��.                                                            (2.46)                                                         

holds for all �, � ∈ �  .Then �  has a unique fixed point �∗ ∈ �  and for each � ∈ �  the Picard 

sequence ��T�� converges to �∗ when n → ∞. 
Proof Let ��  be arbitrary in � . Define a sequence ��T� ⊂ �  by �T�; = ��T  for n ∈ ℕ.                       
If �T� =  �T��; for some n� ∈ ℕ, then �T� is a fixed point of T, and hence the proof is completed. 

Thus, throughout the proof, we assume that �T ≠ �T�; for all n ∈ ℕ. From (2.46), we get 

                        0 <  ���T�; �T�I� = ��S�T, S�T�;� ≤ �����T, �T�;�����T, �T�;�.                   (2.47) 

Thus, we conclude that ���T�; xT�I� <  ���T , �T�;� for all n ∈ ℕ. So, the sequence ����T �T�;�� is 

nonnegative, non-increasing and bounded from below. Hence, there exists � ≥ 0  such that 
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rsoT→m ���T �T�;� = �. We claim that � = 0. Suppose, on the contrary, that � > 0. Then, due to 

(2.47), we have 

                                              
��x��],x������x�,x��]� ≤   �j���T, �T�;�k < 1.                                                 (2.48) 

which yields that rsoT→m �j���T, �T�;�k = 1 . By property of  � ∈ Z , we derive 

that  rsoT→m ���T �T�;� = 0 . We shall show that ��T�  is a Cauchy sequence. Suppose, on the 

contrary, that ��T� is not a Cauchy sequence. Thus, there exists p > 0 such that, for all � > 0, there 

exist o��� > n��� > � with (the smallest number satisfying the condition below) 

                              �j�q���, �T���k ≥ p  and  �j�q���h;, �T���k < p.                                            (2.49) 

Then we have 

                             p ≤ �j�q���, �T���k                                                                                            (2.50) 

                                ≤ �j�q���, �q���h;k + �j�q���h;, �T���k 

                              < �j�q���, �q���h;k + p. 

Letting � → ∞  in the above inequality, we have 

                          rso�→m �j�q���, �T���k = p                                                                                  (2.51) 

By using (2.50) and (2.51), we obtain  

                          rso�→m �j�q���h;, �T���h;k = p                                                                          (2.52) 

Thus from (2.46), we have 

             �j�q��� �T���k = �j��q���h;, ��T���h;k                                                                         (2.53) 

                                       ≤ � z�j�q���h;, �T���h;k| �j�q���h;, �T���h;k 

                                       < �j�q���h;, �T���h;k  

Hence, we conclude that 

                               
�jx���� x����k�jx�����],x�����]k ≤ � z�j�q���h;, �T���h;k| < 1                                            (2.54) 

keeping (2.53) and (2.54) in mind and letting n →  ∞   in the above inequality, we derive that rso�→m � z�j�q���h;, �T���h;k| = 1 and so, rso�→m �j�q���h;, �T���h;k = 0. Hence, p = 0, which 

is a contradiction. So, we conclude that ��T�  is a Cauchy sequence. But X is a complete dq-metric 

space, it follows that there exists �∗ ∈ �  such that ��T� converges to �∗ i.e.    rsoT→m ���T , �∗� =rsoT→m ���∗, �T� = 0. Now we will prove that �∗ is a fixed point of T. We have 

            ���∗, ��∗� ≤ ���∗, �T�;� + ��xT�; , ��∗�                                                                         (2.55) 

                               ≤ ���∗, �T�;� +  �����T , �∗�����T , �∗�          
                               → 0  �� n → ∞.          
This implies that ���∗, ��∗� = 0 . Similarly, we can show that ����∗, �∗� = 0 . Hence  ��∗ = �∗ . 

Finally to prove that last part of the theorem; let us assume that ��∗ = �∗, ��∗ = �∗, �∗ ≠�∗, �∗, �∗ ∈ �. Therefore, 

                      0 < ���∗, y∗� = d�Tx∗ , Ty∗�                                                                                    (2.56) 

                         ≤ βjd�x∗, y∗�kd�x∗, y∗� < ��x∗, y∗� 

This is a contradiction. Hence fixed point x∗ of T is unique in   X . 

Now, we present one example to illustrate above Theorem 2.20. 
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Example 2.21 Let X = �0,1]  with complete d, -metric defined by  d�x, y� = max�x, y� .The 

function β: ℝ�� → �0,1�  defined by  β�t� =  �¡¢�; , for  t > 0 and β�0� ∈ �0,1�. Then β ∈ Z. Now we 

define a self-map T: X → X by T�x� = £¤ . Take x = 1, y = 0 and obtain that   

                                  d�T1, T0� = d z;¤ , 0| = ;¤, 

             βjd�1,0�kd�1,0� = β�1�. 1 = β�1�. 1 =  �];�; = ;I  > ;¤ 

On the other hand, take x, y ∈ X with x ≥ y. Then 

                                    d�Tx, Ty� = d z£¤ , <¤| = £¤, 

                   βjd�x, y�kd�x, y� = β�x�. x = £ �¥£�; ≥ ;I  > ;¤ , ∀ x ∈ �0,1]. 
Hence T satisfies condition of Theorem 2.20 and T has a unique fixed point  x∗ = 0.  

3. CONCLUSION 

To summarize, we have explored the properties of dislocated quasi-metric spaces and dislocated 

metric spaces. Also discuss the difference between metric space and generalizations of metric space. 

We established a fixed point theorem for a self-mapping in complete dislocated metric spaces under 

contractive conditions related to a decreasing map  τ ∶ ℝ�� → �0, 2h;� . We obtained sufficient 

conditions for existence of points of coincidence and common fixed points of three self mappings 

satisfying a contractive type conditions in dislocated metric spaces. Also we presented a fixed point 

theorem for mappings satisfying Geraghty-type contractive conditions in dislocated quasi-metric 

space. We also present some examples in support of our results. 
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