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Abstract: In the current study, the direct method has been chosen to serve for solving an optimal control 
problem for the dynamics of the hepatitis C virus in the human body. A two compartmental mathematical model 
of ordinary differential equations has been taken to constitute a set of constraints. In that model, protein 
(Interferon) and drug (Ribavirin) stand for controls. Assuming that the patient is administrating both interferon 
and Ribarivin; the efficiency of the method has been tested via the model validation by taking the values of the 
determinant parameters of the said disease. Results of the chosen numerical method are in good agreement with 
experimental data  
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1. INTRODUCTION  

Hepatitis C, a blood-borne virus emanates from infection with the hepatitis C virus (HCV). It is an 
enveloped, single stranded and positive sense RNA virus [1]. The virus is susceptible to cause both 
acute (lasting a few period of time) and chronic (lifelong) hepatitis infection depending on the 
patients. Chronic Hepatitis C is a serious disease that can result in long-term health problems 
including the patient death. According to [2], 130-150 million of people globally have chronic 
hepatitis C infection and among them a significant number should develop liver cirrhosis or liver 
cancer. Each year, 350,000 to 500,000 people die from hepatitis C-related liver diseases. About 40% 
of HCV patients recover fully, but the remainder, whether they present symptoms or not, become 
chronic carriers. Of these, 20% develop cirrhosis. Of those with cirrhosis, up to 20% develop liver 
cancer [2]. 

Although HCV is less commonly transmitted through the infected blood than HBV and HIV [3]; HCV 
is usually spread by sharing infected needles with a carrier, by receiving infected blood or by 
accidental exposure to infected blood. Sometimes infection can also be acquired via nonparental 
means that is not yet fully defined including sexual transmission. The majority of infected persons 
might not be aware of their infection because they are not clinically ill. HCV is not spread by breast 
feeding, sneezing, coughing, hugging, sharing eating utensils or drinking glasses, other normal social 
contact, food or water and a person who has hepatitis C can still get other types of hepatitis, such as 
hepatitis A or hepatitis B [4]. Antiviral medicines can cure hepatitis C infection, but access to 
diagnosis and treatment is low. It has been shown that depending on the treatment used, antiviral 
treatment is successful about 50-90% of patients treated and reduces the development of both liver 
cancer and cirrhosis. For the time being, there is no vaccine for Hepatitis C, however research in this 
area is ongoing. The best way to prevent Hepatitis C is by avoiding behaviors that can spread the 
disease, especially injecting drugs. It is well known that HCV causes both acute and chronic infection. 
Acute HCV infection is usually asymptomatic, and is only very rarely associated with life-threatening 
disease. About 15-45% of infected persons spontaneously clear the virus within six months of 
infection without any treatment. the remaining 55-85% of persons might develop chronic HCV 
infection. Of those with chronic HCV infection, the risk of cirrhosis of the liver is 15-30% within 20 
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years. The current standard treatment for hepatitis C is combination of antiviral therapy with 
interferon and ribavirin, which are effective against all the genotypes of hepatitis viruses (pan-
genotypic). Unfortunately, interferon is not widely available globally and it is poorly tolerated in 
some patients. This means that management of the treatment is complex, and many patients do not 
finish their treatment. Despite of these limitations, interferon and ribavirin treatment can be life-
saving. 

Some treatments of HCV infection are Pegylated interferon in combination with ribavirin, direct-
acting antiviral telaprevir or boceprevir, given in combination with pegylated interferon and ribavirin, 
Sofosbuvir, given in combination with ribavirin with or without pegylated interferon (depending on 
the HCV genotype) and Simeprevir, given in combination with pegylated interferon and ribavirin. 
Scientific advances have led to the development of new antiviral drugs for hepatitis C, which are 
much more effective, safer and better-tolerated than existing therapies. These therapies, known as oral 
directly acting antiviral agent (DAAs) therapies simplify hepatitis C treatment by significantly 
decreasing monitoring requirements and by increasing cure rates. Although the production cost of 
DAAs is low, the initial prices set by companies are very high and likely to make access to these 
drugs difficult even in high-income countries. To ensure that these advances lead to greater access to 
treatment globally, much needs must be done. 

Mathematical modelling and quantitative analysis of hepatitis C infections has been explored 
extensively over the last decade. Most of the modelling has been restricted to the short term dynamics 
of the model. One of the earliest models was proposed by Neumann et al. [5], who examine the 
dynamics of HCV in presence of Interferon- α   (IFN- α ) treatment. They found that the primary 
role of IFN is to block the production of virions from the infected hepatocytes. However, IFN has 
little impact when it comes to controlling the infection of the hepatocytes. Dixit et al. [6] improved 
upon [5] by including the effects of ribavirin, which in turn results in a fraction of the virions being 
rendered noninfectious. Their model is able to explain clinically observed biphasic decline patterns 
amongst patient population. Their study also shows that while IFN plays a crucial role in the first 
phase decline of viral load, ribavirin has very little impact. However, in case of low IFN efficacy, 
ribavirin makes a significant contribution to the second phase of decline. The model could not 
successfully explain the triphasic decline patterns, as well as some cases of non-responders. Dahari et 
al. [7] in a subsequent and improved model, take into account the homeostatic mechanisms for the 
liver by incorporating a growth function. This model successfully explains the triphasic decline, as 
well as therapeutic failures. Mathematical models can be a useful tool in controlling hepatitis C virus 
in order to put down the infection from the population. 

Control theory has found wide ranging applications in biological and ecological problems [8]. In that 
context Chakrabarty and Joshi [9] considered a model (motivated by [5]) for HCV dynamics under 
control of the combination of interferon and ribavirin. An objective function is formulated to 
minimize the viral load, as well as the drug side-effects and the optimal system is solved numerically 
to determine optimal efficacy of the drugs. Chakrabarty [10] extended the results in [8] by considering 
a clinically validated function form for the interferon efficacy and hence determined the optimal 
efficacy of ribavirin. Martin et al. [11] in a recent paper examine a three compartment model for 
HCV, involving the susceptible, chronically infected and treated injecting drug users (IDUs). They 
determine an optimal treatment programme over a 10 year period taking into account several 
biomedical and economic objectives. The objective of this paper is to find a new mathematical model 
of therapeutic hepatitis C virus dynamics with treatment of two drugs, that is combination treatment 
with IFN and ribavirin. 

This paper is structured as follows. In section one, we set an optimal control problem so be solved. 
The outline of direct method is presented in section two. In section three we present numerical results 
and the concluding remarks are presented in section four. 

2. SETTING OF AN OPTIMAL CONTROL PROBLEM  

In terms of constraints of our problem, we consider a two compartmental mathematical model 
proposed in [12]. This mathematical model is formulated from a diagram given in the figure 1.  
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Figure 1. A schematic diagram of two compartments for modeling human hepatitis C virus dynamics. PBr is 
blood pressure. IFN is interferon and Rib is ribavirin. H and I represent uninfected hepatocytes and infected 
hepatocytes respectively. 
 
The equations the model are presented in the following form: 
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Find  )(tIFN ∗   and  )(tRib∗   solution of 
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subject to the system (1)-(2). 
The positive scalar coefficients Hq , IFNq , and Ribq  determine how much weight is attached to each 

cost component term in the integrand whereas  Tmax   denotes the maximum time that the physical 
activity can take.  

3. OUTLINE OF DIRECT APPROACH AND DISCRETIZATION OF OBJECTIVE FUNCTION  

In order to approximate the system (1)-(2), we consider 
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Let us introduce the vector space  NW whose the basis is .NB  In this context we have 
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Therefore, the system (1)-(2) can be approached by the following form. 

Find  2)(),( NNN WIH ∈   solution of the system 
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The discretization of the optimal problem (3) is done as follows. 
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Therefore the cost function (15) becomes 
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where (17) is determined using rectangular method such that the discretization is done on a regular 
grid  MΩ  . 
The discrete formulation of optimal problem (3) subject to (1)-(2) is written as follows. 
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Finally, the optimal control problem (3), (1)-(2) is a minimisation problem with constraint. The 
discrete formulation of such problem can be written as follows. 
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where  
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kj ,
λ   are those function  N

jλ   in  NB   

and  Y   is the matrix such that the  ( , )thj k   component is  ,)( e
jk

N
j xtx −   where  ( , )N N N Tx H I=   is the 

solution of (3) subject to (1)-(2) associated to  Nλ λ=   and T
ee

e IHx ),(=  .  

4. NUMERICAL TEST RESULTS  

The treatment used and its duration depend on a number of factors, including HCV genotype 
(genetic structure of the virus), viral load, past treatment experience, degree of liver damage, 
ability to tolerate the prescribed treatment, and whether the person is waiting for a liver 
transplant or is a transplant recipient. It is known that the main aim of treatment for chronic 
hepatitis C is to suppress HCV replication before there is irreversible liver damage. 
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Furthermore, the role of drugs on chronic hepatitis C virus is to reduce the risk of liver 
disease and prevent you from passing the infection to others. In some cases, HCV treatment 
may be limited by the health insurance plan or drug formulary. To test our models we 
consider a patient who is infected with the Hepatitis C virus. The patient is administrating the 
ribavirin as drug and the interferon is increasing as protein in the body during 12 months. It is 
known that the role of interferon and ribavirin for hepatitis C virus is to allow uninfected 
hepatocytes cells to be around the equilibrium value. In this case the equilibrium value has 
been considered to be  1000=eH  cells/dl as uninfected hepatocytes and  0=eI   as infected 

hepatocytes. In the same way, in numerical simulation we take  100=N   and  .12max =T   We 

take also the initial values of a patient of HCV that is  5000 =H   and  3000 =I  . Test results 

of numerical simulation are illustrated in figure  where the dotted lines correspond to the first 
model while the dashed lines are related to the second model. The solid lines represent 
desired mean values. In this figure we have depicted the curves of optimal trajectories of 
determinant parameters, that is uninfected hepatocytes, infected hepatocytes, interferon and 
ribavirin.  
The variation of controls of the mathematical model (1)-(2) is illustrated in figure (a) and (b).  

 

Figure 2. Variation of optimal trajectories of interferon (a), ribavirin (b), uninfected hepatocytes (c) and 
infected hepatocytes (d) where dotted lines correspond to the first model while the dashed lines are related to 
the second model. The solid lines represent desired mean values. 

This figure shows the decrease from 1 (when the treatment is absent) of both interferon ( IFN�   and 
ribavirin ( Rib ) to be closer to the lower value  0   (maximal use of therapy). The response of those 
two controls is represented in the figure (c) and (d). Furthermore, during the treatment period, the 
number of infected hepatocytes is decreasing ((d)) and one of uninfected hepatocytes is increasing 
((c)). When  IFN   and  Rib   as protein and drug respectively act on its minimal level (at this stage 
the controls reach their minimum value equals to zero as shown in the figure (a) and (b)), they fight 
against the antibodies and the number of infected hepatocytes decreases rapidly until when it reaches 
the value zero (no virus in the body as illustrated in the figure (d)) whereas uninfected hepatocytes 
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increases. This makes all liver cells to be free; and consequently, no infected liver cells. The response 
of control is also shown in the figure (c) where there is a increase of uninfected hepatocytes to its 
desired value. The results obtained in this work are rather satisfactory. In particular, the reaction of the 
disease to drugs can be modeled and a feedback can be approximated by the solution of an optimal 
control problem, that is the drugs reduce the risk of disease and therefore the protein and drug play a 
crucial role such that any patient becomes healthy. 

5. CONCLUDING REMARKS  

In this work we have been investigating an optimal control problem of mathematical model that 
describes the variation of uninfected hepatocytes and infected hepatocytes for hepatitis C virus due to 
the response of protein (Interferon) and drug (Ribavirin). The treatment of HCV depends on a number 
of different factors. The increasing necessity to interpret the meaning of measurable variables such as 
interferon and ribavirin under both physiological and pathological conditions for a patient has 
imposed the need for relatively simple models that should be able to describe as accurately as possible 
the mechanical behavior of the disease. The direct approach used in the present work provides 
interesting answers to the question of determining optimal trajectories due to the best treatment 
capacity during a certain period of administration of drugs. Numerical simulations give interesting 
conclusions. Notably the model would be helpful for the control of some HCV patients. 
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