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Abstract:A circulant graph  is said to have the Cayley Isomorphism (CI) property if whenever  is 

isomorphic to , there is some a∈  for which S = aR. It is known that (i) for 2  n, 3 k, 1 2s-1  2n-1, 

n  2s-1, R = {2s-1, 4n-(2s-1), 2p1,2p2,…, 2pk-2} and S = {2n-(2s-1), 2n+2s-1, 2p1,2p2,...,2pk-2}, circulant graphs 

C8n(R) and C8n(S) are without CI-property with  = 2 and (ii) for 1  n, 3  k, R = {1, 9n-1, 9n+1, 

3p1,3p2,…,3pk-2}, S = {3n+1, 6n-1, 12n+1, 3p1,3p2,…,3pk-2} and T = {3n-1, 6n+1, 12n-1, 3p1,3p2,…,3pk-2}, 

circulant graphs ,  and  are without CI-property  = 3 where gcd(p1,p2,…,pk-2) = 1 

and n,s,p1,p2,…,pk-2 N. In this paper, we prove that for 1 n, 3 k, 1 i  5, = 5n(i-1)+1 and = {5, , 25n-

,25n+ ,50n- ,50n+ , 5p1,5p2,…,5pk-2}, circulant graphs  are without CI-property = 5 where 

 = gcd(n, ), , gcd(p1,p2,…,pk-2) = 1 and n,p1,p2,…,pk-2 N. 
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1 INTRODUCTION 

Circulant graphs have been investigated by many authors [1]-[9]. An excellent account can be found 

in the book by Davis [2] and in [4].  

Through-out this paper, for a set R = { },  denotes circulant graph  

where 1  [n/2]. We consider only connected circulant graphs of finite order, 

V( ) = {v0,v1,v2,…,vn-1} with vi adjacent to vi+rfor each r R, subscript addition taken modulo n 

and all cycles have length at least 3, unless otherwise specified, 0 i n-1. However when R, edge 

 is taken as a single edge for considering the degree of the vertex  or  and as a double 

edge while counting the number of edges or cycles in , 0 i n-1. Circulant graph is also defined 

as a Cayley graph or digraph of a cyclic group. If a graph G is circulant, then its adjacency matrix 

A(G) is circulant. It follows that if the first row of the adjacency matrix of a circulant graph is 

[a1,a2,…,an], then a1 = 0 and ai= an-i+2, 2 i n [2], [8]. We will often assume, with-out further 

comment, that the vertices are the corners of a regular n-gon, labeled clockwise. Circulant graphs 

(1,2,7) and (2,3,5) are shown in Figures 1 and 2, respectively.   

THEOREM 1.1 [8]If , then there is a bijectionffromRtoSso that for allr R, gcd(n, r) = 

gcd(n, f(r)).  

DEFINITION 1.2 [5] A circulant graph  is said to have the CI-property if whenever  is 

isomorphic to , there is some a∈  for which S = aR. 

LEMMA 1.3 [8] Let S be a non-empty subset of  and x . Define a mapping : S such 

that (s) = xsfor every s Sunder multiplication modulo n. Then is bijective if and only ifS = 

andgcd(n, x) = 1.      
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DEFINITION 1.4 [1] Circulant graphs,  and  for R = {r1,r2,…,rk} and S = {s1,s2,...,sk} are 

Adam’s isomorphicif there exists a positive integer x relatively prime to n with S =  

where , the reflexive modular reductionof a sequence <ri> is the sequence obtained by 

reducing each ri modulo n to yield  and then replacing all resulting terms  which are larger than  

by n- [1].  

LEMMA 1.5 [8]Let j,m,q,r,t,x such thatgcd(n, r) = m> 1, x = j+qm, 0 j m-1 and 

0 q,t -1. Then the mapping :  defined by (x) = x+jtmfor every x under 

arithmetic modulo n is bijective. 

THEOREM 1.6 [8]Let V( ) = {v0,v1,v2,…,vn-1}, V( ) = {u0,u1,u2,…,un-

1},r Randj,m,q,t,x such thatgcd(n, r) = m> 1, x = j+qm, 0 j m-1 and 0 q,t  -1. Then the 

mapping : V( ) V( (1,2,…,n-1)) = V( ) defined by ( ) = 

and ((vx,vx+s)) = ( (vx), (vx+s)) for everyx ands R, under subscript arithmetic 

modulo n, for a set R = {r1,r2,…,rk, n-rk,n-rk-1,…,r1} is one-to-one, preserves adjacency and 

( ) for t = 0,1,2,…,  - 1.    

DEFINITION 1.7 [8] Let V( ) = {v0,v1,v2,…,vn-1}, V( ) = {u0, u1, u2, … , un-1},r R and 

j,m,q,t,x  such that gcd(n, r) = m> 1, x = j+qm, 0 j m-1 and 0 q,t  -1. Define one-to-one 

mapping : V( ) V( ) such that ( ) = and ((vx,vx+s)) = 

( (vx), (vx+s)) for every x Znand s R, under subscript arithmetic modulo n. And if for a 

particular value of t, ( ) =  for some S  [1, [n/2]] and S xR for all x  under 

reflexive modulo n, then  and  are called Type-2isomorphiccirculant graphs w.r.t. r. 

DEFINITION 1.8 [8] The symmetric equidistance condition with respect to  in  for a set R = 

{r1,r2,…,rk} is that  is adjacent to  if and only if  is adjacent to , using subscript 

arithmetic modulo n, 0 i,j n-1.  

THEOREM 1.9 [8]For a setR = {r1,r2,…,rk}  [1, n/2], 1 i kand 0 t  -1, ( ) = 

for someS  [1, n/2] if and only if ( ) satisfies the symmetric equidistance condition 

w.r.t. v0.   

THEOREM 1.10 [8]For 2 n, 3 k, 1  2s-1  2n-1, n  2s-1, R = {2s-1, 4n-2s+1, 2p1,2p2,…,2pk-2} 

and S = {2n-2s+1, 2n+2s-1, 2p1,2p2,...,2pk-2}, circulant graphsC8n(R) andC8n(S) are Type-2 

isomorphic and without CI-property wheregcd(p1,p2,…,pk-2) = 1 andn,s,p1,p2,…,pk-2 N.    

THEOREM 1.11 [9]For 3 k, R = {1, 9n-1, 9n+1, 3p1,3p2,…,3pk-2}, S = {3n+1, 6n-1, 12n+1, 

3p1,3p2,…,3pk-2} and T = {3n-1, 6n+1, 12n-1, 3p1,3p2,…,3pk-2}, C8n(R) andC8n(S) are Type-2 

isomorphic and without CI-property wheregcd(p1,p2,…,pk-2) = 1 andn,p1,p2,…,pk-2 N.    

THEOREM 1.12 [8]For R = {2, 2s-1, 2s’-1}, 1 t  [ ], 1  2s-1  2s’-1  [ ] and n,s,s’,t N, 

if and ( ) are Type-2 isomorphic circulant graphs for somet, thenn  0 (mod 8),  

2s-1+2s’-1 = , t = or , 2s’-1 , 1  2s-1 and 16 n.     

THEOREM 1.13 [8] Let x . Define mapping :  for a setR = {r1,r2,…,rk, n-

rk,n-rk-1,...,n-r1} such that (vi) = uxiand ((vi , vi+s)) = ( (vi), (vi+s))forevery 

s Randi under subscript arithmetic modulo n where V( ) = {v0,v1,...,vn-1} and V( ) = 

{u0,u1,…, 

un-1}. Then  =  and the mapping  is one-to-one if and only if gcd(n, x) = 1.  

DEFINITION 1.14 [8] Let ( ) = ( ) = { ( ) :x }= { (xR) / x } 

for a set R = {r1,r2,…,rk, n-rk,n-rk-1,...,n-r1}.Define ‘o’ in ( ) such that ( )o 

( )= ( )and (xR) o (yR) = ((xy)R)for every x,y , under arithmetic 

modulo n. Clearly, ( ) = ( ( ), o)is the set of all circulant graphs which are Adam’s 
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isomorphic to and( ( ), o)is an abelian group calledtheAdam’s group ortheType-1 

group on  under ‘o’. 

DEFINITION 1.15 [8] Let S be a non-empty subset of , r S, m,q,t,t’,x  such that gcd(n, r) = 

m> 1, x = j+qm, 0 j m-1 and 0 q,t,t’  -1. Define :  such that (x) = x+jtmfor 

every x  under arithmetic modulo n, = { : t = 0,1,…,  -1} and for s , (s) = 

{ (s): t = 0,1,…,  -1} and (S) = { (s) : s S}. Define ‘o’ in  such that o  = 

and ( o )(x) ( = ( (x)) = (x+jt’m) = (x+jt’m)+jtm = x+j(t+t’)m ) = 

(x) where t+t’ is calculated under addition modulo . Clearly, for every s , ( (s), o)is an 

abelian group. 

DEFINITION 1.16 [8] Let V( ) = {v0,v1,v2,…,vn-1}, V( ) = {u0,u1,u2,…,un-1},r R and 

j,m,q,t,x  such that gcd(n, r) = m> 1, x = j+qm, 0 j m-1 and 0 q,t  -1. Define : V( ) 

V( (1,2,…,n-1)) = V( ) such that ( ) =  and ((vx,vx+s)) = ( (vx), (vx+s)) 

for every x and s R, under subscript arithmetic reflexive modulo n. Let = { : t = 0,1,…,  

-1} and ( )= { ( ): t = 0,1,…,  -1}. Define ‘o’ in  such that o  = 

and ( )o ( ) = ( ) for every ,  where t+t’ is 

calculated under addition modulo . Then ( ( ), o) is an abelian group.  

Clearly ( ) contains all isomorphic circulant graphs of Type 2 of , if exist. Let 

( )= { }  { :  is Type-2 isomorphic to  w.r.t. r}. Thus, 

( ) = { } { ( ): ( )=  and  is Type-2 isomorphic to 

 w.r.t. r, 0 t  -1} ( ) and ( ( ), o) is a subgroup of ( ( ), o). 

Clearly, ( ) ( ) = { }. has Type-2 isomorphic circulant graph w.r.t. r 

iff  ( ) { } iff  ( )  { }  iff | ( )| > 1. 

Definition 1.17For any circulant graph , if ( )  { }, then 

( ( ), o) is called the Type-2 group of   w.r.t. runder ‘o’. 

Cayley Isomorphism (CI) problem determines which graphs (or which groups) have the CI-property 

and its investigation started with the investigation of isomorphism of circulant graphs. An important 

achievement is the complete classification of cyclic CI-groups by Muzychuk in 1997 [5],[6]. But 

study on non-CI-graphs is not much done. Type-2 isomorphic circulant graphs are clearly graphs 

without CI-property. Theorems 1.10 and 1.11 gave classes of circulant graphs without CI-property. In 

this paper Theorem 2.3 gives new class of circulant graphs without CI-property. 

Effort to obtain more circulant graphs without CI-property is the motivation for this work. For all 

basic ideas in graph theory, we follow [3]. 

2 MAIN RESULT 

THEOREM 2.1Fori = 1 to 5,  = 5n(i-1)+1 and  = {5, , 25n- , 25n+ , 50n- , 50n+ }, 

circulant graphs are isomorphic circulant graphs, n N. 

Proof:We prove that for i = 1 to 5,  = 5n(i-1)+1 and  = {5, , 25n- , 25n+ , 50n- , 50n+ }, 

 =  where i+1 is calculated under addition modulo 5.  

 To simplify our calculation let us consider  = {5, , 25n- , 25n+ , 50n- , 50n+ , 75n- , 

75n+ , 100n- , 100n+ , 125n- , 125n-5},  = 5n(i-1)+1 and i = 1 to 5. In particular, 

 = {1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-5, 125n-1}, 

 = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1,80n+1,95n-1,105n+1,120n-1,125n-5}, 

 = {5, 10n+1, 15n-1, 35n+1,40n-1,60n+1,65n-1,85n+1, 90n-1,110n+1,115n-1,125n-5}, 

 = {5, 10n-1, 15n+1, 35n-1, 40n+1,60n-1,65n+1,85n-1,90n+1,110n-1,115n+1,125n-5}, 

 = {5, 5n-1, 20n+1, 30n-1, 45n+1, 55n-1, 70n+1,80n-1,95n+1,105n-1,120n+1,125n-5}. 
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Using the definition of  we get the following 

( ) = ({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-5, 

125n-1}) = {5n+1, 5, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1, 80n+1, 95n-1, 105n+1, 125n-5, 120n-1} = 

; 

( ) = ({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-

5, 125n-1}) = {10n+1, 5, 15n-1, 35n+1, 40n-1, 60n+1, 65n-1, 85n+1, 90n-1, 110n+1, 125n-5, 115n-1} 

= ; 

( ) = ({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-

5, 125n-1}) = {15n+1, 5, 10n-1, 40n+1, 35n-1, 65n+1, 60n-1, 90n+1, 85n-1, 115n+1, 125n-5, 110n-1} 

= ; 

( ) = ({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-

5, 125n-1}) = {20n+1, 5, 5n-1, 45n+1, 30n-1, 70n+1, 55n-1, 95n+1, 80n-1, 120n+1, 125n-5, 105n-1} 

= . 

Now the result follows from the definition of .   

THEOREM 2.2 When  = {5, , 25n- , 25n+ , 50n- , 50n+ },  = 5n(i-1)+1, i,j = 1 to 5 and 

n N,  = where i+jis calculated under addition modulo 5 and 

 are Type-2 isomorphic circulant graphs. 

Proof: To prove that a set of circulant graphs { } are of Type-2 isomorphic, it is enough to prove 

that every pair of the circulant graphs are different (not the same), isomorphic and not of Adam’s 

isomorphic (not of Type-1 isomorphic).  

When  = {5, , 25n- , 25n+ , 50n- , 50n+ },  = 5n(i-1)+1, 1 i,j  5 and n N,  =  iff i  = 

j. Thus for different i, the set of jump sizes of the five circulant graphs  are different and 

thereby the five circulant graphs are also different. 

In the proof of Theorem 2.1, we have  =  where i+1 is calculated 

under addition modulo 5, i = 1 to 5. Similarly it is easy to prove that  = 

, = ,  =  and 

 =  =  where   = {5, , 25n- , 25n+ , 50n- , 

50n+ },  = 5n(i-1)+1, i = 1 to 5 and n N. This implies when  = {5, , 25n- , 25n+ , 50n- , 

50n+ },  = 5n(i-1)+1, i,j = 1 to 5 and n N,  =  wherei+j is 

calculated under addition modulo 5. This implies that for i = 1 to 5 all the five circulant graphs 

 are isomorphic.  

To complete the proof we are left with establishing their isomorphism is of Type-2. Now it is enough 

to prove that each pair of isomorphic circulant graphs  and  for i j are not of 

Type-1, 1 i,j  5. At first we prove that isomorphic circulant graphs  and  are 

Type-2.  

Claim: For  = {1, 5, 25n-1, 25n+1, 50n-1, 50n+1},  = {5, 5n+1, 20n-1, 30n+1,45n-1, 55n+1} and 

n N,  and  are Type-2 isomorphic. 

If not, they are of Adam’s isomorphic. This implies, there exists s N such that  = 

  where s = 5x-4 or s = 5x-3 or s = 5x-2 or s = 5x-1 and gcd(125n, s) = 1, x N. Now let us 

choose s such that s = 5x-4 such that gcd(125n, 5x-4) = 1,  =  and x N. 

This implies, (5x-4){1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-5, 125n-

1} = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1, 80n+1, 95n-1, 105n+1, 120n-1, 125n-5} under 

arithmetic modulo 125n. This implies, 5(5x-4), (5x-4)(125n-5), 5+125n  and 125n-5+125n  are the 

only numbers, each is a multiple of 5, in the two sets for some p1,p2 . Thus when s = 5x-4 the 

following two cases arise.  

Case i 5(5x-4) = 5+125np1, p1 , x N, 1  5x-4  125n-1. 

In this case, p1 = 0 or 1 or 2 or 3 or 4 since 1  5x-4  125n-1 and n,x N. When p1 = 0, 5x-4 = 1; p1 = 

1, 5x-4 = 25n+1; p1 = 2, 5x-4 = 50n+1; p1 = 3, 5x-4 = 75n+1; p1 = 4, 5x-4 = 100n+1 and in each case, 

graph  is same as . The jump sizes of the circulant graph  
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corresponding to Adam’s isomorphism when s = 5x-4 = 25n+1, s = 5x-4 = 50n+1, s = 5x-4 = 75n+1 

and s = 5x-4 = 100n+1 are given in Table 1. 

Case ii 5(5x-4) = 125n-5+125n , p2 , x N, 1  5x-4  125n-1. 

In this case, p2 = 0 or 1 or 2 or 3 or 4 since 1  5x-4  125n-1 and n,x N. When p2 = 0, 5x-4 = 25n-1; 

p2 = 1, 5x-4 = 50n-1; p2 = 2, 5x-4 = 75n-1; p2 = 3, 5x-4 = 100n-1; p2 = 2, 5x-4 = 125n-1 and in each 

case, graph  is same as . The jump sizes of the circulant graph 

 corresponding to Adam’s isomorphism when s = 5x-4 = 25n-1, s = 5x-4 = 50n-1, s = 5x-4 

= 75n-1, s = 5x-4 = 100n-1 and s = 5x-4 = 125n-1 are given in Table 1. 

Consider the case when s = 5x-3 such that  =  where gcd(125n,5x-3) = 1, 1  5x-

3  125n-1 and x N. This implies, (5x-3){1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 

100n+1, 125n-5, 125n-1} = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1, 80n+1, 95n-1, 105n+1, 

120n-1, 125n-5} under arithmetic modulo 125n. This implies, 5(5x-3), (5x-3)(125n-5), 5+125n  and 

125n-5+125n  are the only numbers, each is a multiple of 5, in the two sets for some p1,p2 . Thus 

when s = 5x-3 the following two cases arise.   

Table 1.Calculation of rs under arithmetic modulo 125n w.r.t.  where s = 5x-i, i= 1,2,3,4. 

sr 1 25n-1 25n+1 50n-1 50n+1 75n-1 75n+1 100n-1 100n+1 125n-1 

25n+1 25n+1 125n-1 50n+1 25n-1 75n+1 50n-1 100n+1 75n-1 1 100n-1 

50n+1 50n+1 100n-1 75n+1 125n-1 100n+1 25n-1 1 50n-1 25n+1 75n-1 

75n+1 75n+1 75n-1 100n+1 100n-1 1 125n-1 25n+1 25n-1 50n+1 50n-1 

100n+1 100n+1 50n-1 1 75n-1 25n+1 100n-1 50n+1 125n-1 75n+1 25n-1 

25n-1 25n-1 75n+1 125n-1 50n+1 100n-1 25n+1 75n-1 1 50n-1 100n+1 

50n-1 50n-1 50n+1 25n-1 25n+1 125n-1 1 100n-1 100n+1 75n-1 75n+1 

75n-1 75n-1 25n+1 50n-1 1 25n-1 100n+1 125n-1 75n+1 100n-1 50n+1 

100n-1 100n-1 1 75n-1 100n+1 50n-1 25n+1 25n-1 50n+1 125n-1 25n+1 

125n-1 125n-1 100n+1 100n-1 75n+1 75n-1 50n+1 50n-1 25n+1 25n-1 1 

Table 2.Calculation of rs under arithmetic modulo 125n w.r.t.  where s = 5x-i, i = 1,2,3,4. 

sr 5n+1 20n-1 30n+1 45n-1 55n+1 70n-1 80n+1 95n-1 105n+1 120n-1 

25n+1 30n+1 120n-1 55n+1 20n-1 80n+1 45n-1 105n+1 70n-1 5n+1 95n-1 

50n+1 55n+1 95n-1 80n+1 120n-1 105n+1 20n-1 5n+1 45n-1 30n+1 70n-1 

75n+1 80n+1 70n-1 105n+1 95n-1 5n+1 120n-1 30n+1 20n-1 55n+1 45n-1 

100n+1 105n+1 45n-1 5n+1 70n-1 25n+1 95n-1 55n+1 120n-1 80n+1 20n-1 

25n-1 20n-1 80n+1 120n-1 55n+1 95n-1 30n+1 70n-1 5n+1 45n-1 105n+1 

50n-1 45n-1 55n+1 20n-1 30n+1 120n-1 5n+1 95n-1 105n+1 70n-1 80n+1 

75n-1 70n-1 30n+1 45n-1 5n+1 20n-1 105n+1 120n-1 80n+1 95n-1 55n+1 

100n-1 95n-1 5n+1 70n-1 105n+1 45n-1 80n+1 20n-1 55n+1 120n-1 30n+1 

125n-1 120n-1 105n+1 95n-1 80n+1 70n-1 55n+1 45n-1 30n+1 20n-1 5n+1 
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Table 3.Calculation of rs under arithmetic modulo 125n w.r.t.  where s = 5x-i, i =1,2,3,4. 

sr 10n+1 15n-1 35n+1 40n-1 60n+1 65n-1 85n+1 90n-1 110n+1 115n-1 

25n+1 35n+1 115n-1 60n+1 15n-1 85n+1 40n-1 110n+1 65n-1 10n+1 90n-1 

50n+1 60n+1 90n-1 85n+1 115n-1 110n+1 15n-1 10n+1 40n-1 35n+1 65n-1 

75n+1 85n+1 65n-1 110n+1 90n-1 10n+1 115n-1 35n+1 15n-1 60n+1 40n-1 

100n+1 110n+1 40n-1 10n+1 65n-1 35n+1 90n-1 60n+1 115n-1 85n+1 15n-1 

25n-1 15n-1 85n+1 115n-1 60n+1 90n-1 35n+1 65n-1 10n+1 40n-1 110n+1 

50n-1 40n-1 60n+1 15n-1 35n+1 115n-1 10n+1 90n-1 110n+1 65n-1 85n+1 

75n-1 65n-1 35n+1 40n-1 10n+1 15n-1 110n+1 115n-1 85n+1 90n-1 60n+1 

100n-1 90n-1 10n+1 65n-1 110n+1 40n-1 85n+1 15n-1 60n+1 115n-1 35n+1 

125n-1 115n-1 110n+1 90n-1 85n+1 65n-1 60n+1 40n-1 35n+1 15n-1 10n+1 

Case i 5(5x-3) = 5+125np1, p1 , x N, 1  5x-3  125n-1. 

In this case, p1 = 0 or 1 or 2 or 3 or 4 since 1  5x-3  125n-1 and n,x N. When p1 = 0, 5x-3 = 1; p1 = 

1, 5x-3 = 25n+1; p1 = 2, 5x-3 = 50n+1; p1 = 3, 5x-3 = 75n+1; p1 = 4, 5x-3 = 100n+1 and in each case, 

graph  is same as graph . The jump sizes of the circulant graph 

 corresponding to Adam’s isomorphism when s = 5x-3 = 25n+1, s = 5x-3 = 50n+1, s = 5x-

3 = 75n+1 and s = 5x-3 = 100n+1 are given in Table 1. 

Case ii 5(5x-3) = 125n-5+125n , p2 , x N, 1  5x-3  125n-1. 

In this case, p2 = 0 or 1 or 2 or 3 or 4 since 1  5x-3  125n-1 and n,x N. When p2 = 0, 5x-3 = 25n-1; 

p2 = 1, 5x-3 = 50n-1; p2 = 2, 5x-3 = 75n-1; p2 = 3, 5x-3 = 100n-1; p2 = 4, 5x-3 = 125n-1 and in each 

case, graph  is same as . The jump sizes of the circulant graph 

 corresponding to Adam’s isomorphism when s = 5x-3 = 25n-1, s = 5x-3 = 50n-1, s = 5x-3 

= 75n-1, s = 5x-3 = 100n-1 and s = 5x-3 = 125n-1 are given in Table 1. 

Similarly when s = 5x-2 and s = 5x-1 it is easy to see that  =   and 

= . Thus  =   when s = 5x-4 or s = 5x-3 or s = 5x-2 

or s = 5x-1 where gcd(125n, s) = 1 and n,x N. This implies  for every s N 

such that gcd(125n, s) = 1 and n N.   

This shows that the isomorphic circulant graphs  and  for  = {1, 5, 25n-1, 

25n+1, 50n-1, 50n+1},  = {5, 5n+1, 20n-1, 30n+1,45n-1, 55n+1} are not of Type-1, n N. This 

implies, for  = {1, 5, 25n-1, 25n+1, 50n-1, 50n+1},  = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1} 

and n N,  and  are Type-2 isomorphic. 

By similar discussion and calculation it is easy to prove that circulant graphs  and 

 are Type-2 isomorphic for j = 3,4,5. Thus we could prove that  and  

are Type-2 isomorphic for j = 2,3,4,5. Table-i corresponds to calculation of rs under arithmetic 

modulo 125n w.r.t  and  for j = i,i+1,…,4 and i = 1,2,3,4. 

The above discussion and calculations prove that circulant graphs  and  for i  j 

are Type-2 isomorphic,i,j= 1,2,3,4,5. Hence the result follows.   

THEOREM 2.3 Fori = 1 to 5,  = 5n(i-1)+1, 3 kand  = { , 25n- , 25n+ , 50n- , 50n+ , 

5p1,5p2,…,5pk-2}, circulant graphs are Type-2 isomorphic and without CI-property 

wheregcd(p1,p2,…,pk-2) = 1 andn,p1,p2,…,pk-2 N. 

Proof:For i = 1 to 5,  = 5n(i-1)+1, 3 k and  = {5, , 25n- , 25n+ , 50n- , 50n+ }, circulant 

graphs  are Type-2 isomorphic, using Theorem 2.2, n N. Lemma 1.5 helps us while 

searching for possible value(s) of t such that the transformed graph ( ) is circulant of the 
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form  for some S  [1, n/2], the calculation on  which are integer multiples of m =  

gcd(n,r) need not be done as there is no change in these  under the transformation . This 

implies, for i = 1 to 5,  = 5n(i-1)+1 and  = { , 25n- , 25n+ , 50n- , 50n+ , 5p1,5p2,…,5pk-2}, 

circulant graphs  are Type-2 isomorphic circulant graphs where 3 k, gcd(p1,p2,…,pk-2) = 1 

and n,p1,p2,…,pk-2 N. Type-2 isomorphic circulant graphs are graphs without CI-property. Hence the 

result follows. 

Table 4.Calculation of rs under arithmetic modulo 125n w.r.t.  where s = 5x-i, i = 1,2,3,4. 

sr 10n-1 15n+1 35n-1 40n+1 60n-1 65n+1 85n-1 90n+1 110n-1 115n+1 

25n+1 110n-1 40n+1 10n-1 65n+1 35n-1 90n+1 60n-1 115n+1 85n-1 15n+1 

50n+1 85n-1 65n+1 110n-1 90n+1 10n-1 115n+1 35n-1 15n+1 60n-1 40n+1 

75n+1 60n-1 90n+1 85n-1 115n+1 110n-1 15n+1 10n-1 40n+1 35n-1 65n+1 

100n+1 35n-1 115n+1 60n-1 15n+1 85n-1 40n+1 110n-1 65n+1 10n-1 90n+1 

25n-1 90n+1 10n-1 65n+1 110n-1 40n+1 85n-1 15n+1 60n-1 115n+1 35n-1 

50n-1 65n+1 35n-1 40n+1 10n-1 15n+1 110n-1 115n+1 85n-1 90n+1 60n-1 

75n-1 40n+1 60n-1 15n+1 35n-1 115n+1 10n-1 90n+1 110n-1 65n+1 85n-1 

100n-1 15n+1 85n-1 115n+1 60n-1 90n+1 35n-1 65n+1 10n-1 40n+1 110n-1 

125n-1 115n+1 110n-1 90n+1 85n-1 65n+1 60n-1 40n+1 35n-1 15n+1 10n-1 

Table 5 Calculation of rs under arithmetic modulo 125n w.r.t.  where s = 5x-i, i = 1,2,3,4. 

Circulant graphs C125(1,5,24,26,49,51), C125(5,6,19,31,44,56), C125(5,11,14,36,39,61), 

C125(5,9,16,34,41,66) = C125(5,9,16,34,41,59) and C125(4,5,21,29,71,76) = C125(4,5,21,29,49,54) are 

isomorphic and are of Type 2. 

THEOREM 2.4Fori = 1 to 5,  = 5n(i-1)+1, 3 kand  = { , 25n- , 25n+ , 50n- , 50n+ , 

5p1,5p2,…,5pk-2}, ( ( ( )), o) is an abelian group wheregcd(p1,p2,…,pk-2) = 1, n,p1,p2,…,pk-

2 N. 

Proof: The result follows from Theorem 2.3 and definition of Vn,r.    

Let  = ,  = ,  = , 

 =  =  and  = 

sr 5n-1 20n+1 30n-1 45n+1 55n-1 70n+1 80n-1 95n+1 105n-1 120n+1 

25n+1 105n-1 45n+1 5n-1 70n+1 30n-1 95n+1 55n-1 120n+1 80n-1 20n+1 

50n+1 80n-1 70n+1 105n-1 95n+1 5n-1 120n+1 30n-1 20n+1 55n-1 45n+1 

75n+1 55n-1 95n+1 80n-1 120n+1 105n-1 20n+1 5n-1 45n+1 30n-1 70n+1 

100n+1 30n-1 120n+1 55n-1 20n+1 80n-1 45n+1 105n-1 70n+1 5n-1 95n+1 

25n-1 95n+1 5n-1 70n+1 105n-1 45n+1 80n-1 20n+1 55n-1 120n+1 30n-1 

50n-1 70n+1 30n-1 45n+1 5n-1 20n+1 105n-1 120n+1 80n-1 95n+1 55n-1 

75n-1 45n+1 55n-1 20n+1 30n-1 120n+1 5n-1 95n+1 105n-1 70n+1 80n-1 

100n-1 20n+1 80n-1 120n+1 55n-1 95n+1 30n-1 70n+1 5n-1 45n+1 105n-1 

125n-1 120n+1 105n-1 95n+1 80n-1 70n+1 55n-1 45n+1 30n-1 20n+1 5n-1 
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 = . Then the corresponding Type 2 group is ( ( ( )), o) where 

( ) = { , , , , } for i = 1,2,3,4,5. 

Open Problem Find ( ) when  = { , 25n- , 25n+ , 50n- , 50n+ , 

5p1,5p2,…,5pk-2},1 i  5,  = 5n(i-1)+1, 3 k,gcd(p1,p2,…,pk-2) = 1, n,p1,p2,…,pk-2 N. 

3 CONCLUSION 

In this paper and in [12], [14], we obtained families of isomorphic circulant graphs of Type-2 (and 

without CI-property), each with 2, 3 or 5 copies of isomorphic circulant subgraphs. One can go for 

general result on circulant graphs with = gcd(n, ) is odd and > 5.  

ACKNOWLEDGEMENT  

We express our sincere thanks to Prof. L.W. Beineke, Indiana-Purdue University, U.S., Prof. B. 

Alspach, University of Newcastle, Australia, Prof. M.I. Jinnah, University of Kerala, 

Thiruvananthapuram, India and Prof. V. Mohan, Thiyagarajar College of Engineering, Madurai, 

Tamil Nadu, India for their valuable suggestions and guidance. We also express our gratitude to 

Lerroy Wilson Foundation, India (www.WillFoundation.co.in) for providing financial assistance to do 

this research work. 

REFERENCES 

[1]. A. Adam, Research problem 2–10,J. Combinatorial Theory,3 (1967), 393. 

[2]. B. Alspach, J. Morris and V. Vilfred, Self-complementary circulant graphs, Ars Com., 53 (1999), 

187-191. 

[3]. P.J. Davis, Circulant Matrices, Wiley, New York, 1979. 

[4]. B. Elspas and J. Turner, Graphs with circulant adjacency matrices, J. Combinatorial Theory,9 

(1970), 297-307. 

[5]. F. Harary, Graph Theory,Addison - Wesley, Reading, MA, 1969. 

[6]. I. Kra and S. R. Simanca, On Circulant Matrices, AMS Notices, 59 (2012), 368-377. 

[7]. C. H. Li, On isomorphisms of finite Cayley graphs - a survey. Discrete Math. 256 (2002), 301–

334. 

[8]. J. Morris, Automorphism groups of circulant graphs – a survey, arXiv: math/ 0411302v1 

[math.CO], 13 Nov. 2004. 

[9]. M. Muzychuk, On Adam’s Conjecture for circulant graphs, Discrete Math., 167/168 (1997), 

497-510. 

[10]. V. Vilfred, -labelled Graphs and Circulant Graphs, Ph.D. Thesis, University of Kerala, 

Thiruvananthapuram, India, March 1994. 

[11]. V. Vilfred, A Theory of Cartesians Product and Factorization of Circulant Graphs,Hindawi Pub. 

Corp. – J. Discrete Math., Vol. 2013, Article ID 163740, 10 pages. 

[12]. V. Vilfred, New Abelian Groups from Isomorphism of Circulant Graphs, Proce. of Inter. Conf. 

on Applied Math. and Theoretical Computer Sci., St. Xavier’s Catholic Engineering College, 

Nagercoil, Tamil Nadu, India (2013), xiii-xvi. ISBN 978 -93-82338 -30-7. 

[13]. V. Vilfred,On Circulant Graphs in Graph Theory and its Applications, Narosa Publ., New Delhi, 

India (2003), 34-36. ISBN 81-7319-569-2. 

[14]. V. Vilfred and P. Wilson, New Family of Circulant Graphs without Cayley Isomorphism 

Property with  = 3 (Communicated for publication). 

 

 

 

 

 

 

 



Family of Circulant Graphs without Cayley Isomorphism Property with  = 5 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 47 

                                        v0                                                          v0 

                       v15                                              v1                                            v11                                               v13 

 

           v14                                                                                   v2                      v14                                                                                   v2 

 

    v13                                                                                                       v3            v9                                                                                                        v15 

 

 

  v12                                                                                                                v4  v12v4 

 

 

     v11                                                                                                        v5           v7                                                                                                          v1 

 

 

             v10                                                    v6                                    v10                                                                              v6                                                                 

 

                            v9                           v7                                                                              v5        v8              v3 

          v8 

Fig. 1.C16(1,2,7)Fig. 2.C16(2,3,5) 


