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Abstract:A circulant graph C,(R) is said to have the Cayley Isomorphism (CI) property if whenever C,(S) is
isomorphic to C, (R), there is some a&Z,, for which S = aR. It is known that (i) for 2 < n, 3 <k, 1 <2s-1 < 2n-1,
n= 2s-1, R = {2s-1, 4n-(2s-1), 2p1,2py,..., 2Pk2} and S = {2n-(2s-1), 2n+2s-1, 2p1,2P,,...,2Pk-2}, Circulant graphs
Cen(R) and Cg,(S) are without Cl-property with m; = 2 and (ii) for 1 < n, 3 < k, R = {1, 9n-1, 9n+1,
3p1,3P2,-.-,3Pk2}, S = {3n+1, 6n-1, 12n+1, 3p4,3p,,...,3Pk2} and T = {3n-1, 6n+1, 12n-1, 3py,3p,,...,3Pk2}s
circulant graphs C,7,,(R), C,7,(S) and C,,,,(T) are without Cl-property m; = 3 where gcd(py,p2,....px2) = 1
and n,s,py,P, ..., pk2 €N. In this paper, we prove that for 1 <n, 3 <k, 1 <i <5,d;= 5n(i-1)+1 and R;= {5,d;, 25n-
d;,25n+d;,50n-d;,50n+d;, 5p1,5pz,...,5pk.2}, circulant graphs C,s,(R;) are without Cl-property m;= 5 where

m; = ged(n, 75), 75 €R;, 9ed(P1,Pa -...pk2) = 1 @nd n,py,pa. ... pi2 €N
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1 INTRODUCTION

Circulant graphs have been investigated by many authors [1]-[9]. An excellent account can be found
in the book by Davis [2] and in [4].

Through-out this paper, for a set R = {ry, 1y, ..., 1}, C,(R) denotes circulant graph C,, (14,75, ..., 1)
where 1 <r; <1, < -+ <1< [n/2]. We consider only connected circulant graphs of finite order,
V(C,(R)) = {Vo,V1,V2,...,Vn1} With v; adjacent to vi.for each reR, subscript addition taken modulo n
and all cycles have length at least 3, unless otherwise specified, 0 <i<n-1. However whenge R, edge

v;v,,n is taken as a single edge for considering the degree of the vertex v; or v, » and as a double
2

2
edge while counting the number of edges or cycles inC,, (R), 0 <i<n-1. Circulant graph is also defined
as a Cayley graph or digraph of a cyclic group. If a graph G is circulant, then its adjacency matrix
A(G) is circulant. It follows that if the first row of the adjacency matrix of a circulant graph is
[a1,82,...,8n], then a; = 0 and ai= ani2, 2 <i<n [2], [8]. We will often assume, with-out further
comment, that the vertices are the corners of a regular n-gon, labeled clockwise. Circulant graphs
C16(1,2,7) and C;4(2,3,5) are shown in Figures 1 and 2, respectively.

THEOREM 1.1 [8]IfC,,(R)=C,(S), then there is a bijectionffromRtoSso that for allreR, gcd(n, r) =
ged(n, f(r)).

DEFINITION 1.2 [5] A circulant graph C,,(R) is said to have the Cl-property if whenever C,,(S) is
isomorphic to C, (R), there is some a€Z,, for which S = aR.

LEMMA 1.3 [8] Let S be a non-empty subset of Z,, and xeZ,,. Define a mapping @, ,: S=>Z,,such
that@, ,(s) = xsfor every seSunder multiplication modulo n. Then@,, ,is bijective if and only ifS =
Zi,andgcd(n, x) = 1.
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DEFINITION 1.4 [1] Circulant graphs, C,(R) and C,,(S) for R = {ry,r,,...,r} and S = {sy,S,,...,5¢} are
Adam’s isomorphicif there exists a positive integer X relatively prime to n with S = {xry, xr5, ... , X1}y,
where < r; >}, the reflexive modular reductionof a sequence <r;> is the sequence obtained by

reducing each r; modulo n to yield »; and then replacing all resulting terms ] which are larger than%
by n-r/[1].

LEMMA 15 [8]Let jm,q,rtxeZ,such thatgcd(n, r) = m> 1, x = j+gm, 0 <j<m-1 and
0 Sq,tgﬁ—l. Then the mappingé, ... Z,>Z,defined byé, . .(X) = x+jtmfor every xeZ,under
arithmetic modulo n is bijective.

THEOREM 1.6 [8]Let V(C,(R)) = {voVi,Vo,....Vna}, V(Ky) = {UoUy,Uy,...,Un
1, reRandj,m,q,t,xe Z,such thatged(n, r) = m> 1, x = j+gm, 0 <j<m-1 and 0 Sq,ts% -1. Then the
mappingé,, , ¢ V(C,(R)) 2>V(C,(1,2,...,n-1)) = V(K,,) defined by Oy, 1t (Vy)

Uy jem@NA Gy 1 £ (Vi Vi) = (Onr e (Vi)s G et (Viss)) fOr everyxeZ, andseR, under subscript arithmetic
modulo n, for a set R = {ry,r...,f,, N-r,n-req,...,r1} is one-to-one, preserves adjacency and
Oyt (Co(R)) =C, (R)for t = 0,1,2,...,% - 1.

DEFINITION 1.7 [8] Let V(C,(R)) = {Vo,V1,V2,...,Vn1}, V(Ky) = {Uo, Uy, Uy, ... , Ups},FeR and
J:;m,q,t,xeZ, such that gcd(n, r) = m> 1, x = j+gm, 0 <j<m-1 and 0 Sq,ts% -1. Define one-to-one
mapping Gy V(CL(R)) DV(Kyp) such that Oy, (vy) = Ugsjem@nd Gy e((ViViss)) =
(Gprt (V2,0 1t (Viss)) Tor every xeZ,and seR, under subscript arithmetic modulo n. And if for a
particular value of t, 8, .(C,(R)) = C,(S) for some Sc [1, [n/2]] and S#xR for all xe @, under
reflexive modulo n, then C,,(R) and C,,(S) are called Type-2isomorphiccirculant graphs w.r.t. r.

DEFINITION 1.8 [8] The symmetric equidistance condition with respect to v; in C,,(R) forasetR =
{rura....,ng} is that v, ; is adjacent to v; if and only if v,_;,; is adjacent to v;, using subscript
arithmetic modulo n, 0 <i,j<n-1.

THEOREM 1.9 [8]For a setR = {ry,r,....n} < [1, n/2], 1 <i<kand 0 gts% 1, Oy e(Cr(R)) =

Cr(S)for someSc [1, n/2] if and only ifd, .., .(C,,(R)) satisfies the symmetric equidistance condition
W.r.t. V.

THEOREM 1.10 [8]For 2 <n, 3 <k, 1 < 25-1 < 2n-1, n# 2s-1, R = {2s-1, 4n-2s+1, 2p1,2p,,...,2Pk-2}
and S = {2n-2s+1, 2n+2s-1, 2pi,2py,....2Pk2}, circulant graphsCg,(R) andCg,(S) are Type-2
isomorphic and without Cl-property wheregcd(ps,pa,....px2) = 1 andn,s,p1,pa,...,px2€N.

THEOREM 1.11 [9]For 3 <k, R = {1, 9n-1, 9n+1, 3p;,3ps,...,.3Pk2}, S = {3n+1, 6n-1, 12n+1,
3p1,3P2,...,3pk2y and T = {3n-1, 6n+1, 12n-1, 3p;,3py,...,3Pk2}, Cen(R) andCgn(S) are Type-2
isomorphic and without Cl-property wheregcd(ps,pa,. . .,Pk2) = 1 andn,py,pz,...,Pk2€N.

THEOREM 1.12 [8]For R = {2, 2s-1, 25’1}, 1 <t< [%], 1<251<25-1< [%] and n,s,s’,teN,
ifC,(R)andé, , +(C,(R)) are Type-2 isomorphic circulant graphs for somet, thenn= 0 (mod 8),
25-1425 -1 = 2, t=Zor>", 2571 #7, 1 < 251 <zand 16 <n,

THEOREM 1.13 [8] Let xeZ,. Define mapping @, ..V (C,(R))>V (K,)for a setR = {ry,r,,...,r,, n-
MoN-rea,..,N-ri} such thatd, ,(vi) = ug@nd@, (Vi , Viss)) = (Dpx(Vi), @y x(Viss))forevery
seRandieZ,under subscript arithmetic modulo n where V(C,(R)) = {Vo,V1,....Va.i} and V(K,) =
{Uo,ul,...,

Un1}. Then @, (G, (R)) = C,(xR) and the mapping @&, , is one-to-one if and only if gcd(n, x) = 1.

DEFINITION 1.14 [8] Let Ad,,(C,,(R)) = T1,(C,(R)) = { @ x(C,,(R)) :Xe D }= {C,(XR) | xe D}
for a set R = {ryry...,, N-roN-rg,...,n-ri}.Define ‘o’ in Ad,(C,(R)) such that @, ,(C,(R))o
Dy, (C(R))= Dy xy(Cr(R))and G, (XR) 0 Cr(YR) = Cr((xy)R)for every x,ye @,, under arithmetic
modulo n. Clearly, Ad,,(C,(R)) = (T1,(C,,(R)), 0)is the set of all circulant graphs which are Adam’s
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isomorphic to C,(R)and(Ad,,(C,,(R)), o0)is an abelian group calledtheddam’s group ortheType-1
group on C,,(R) under ‘o’.

DEFINITION 1.15 [8] Let S be a non-empty subset of Z,,, reS, m,q,t,t’, xZ, such that gcd(n, r) =
m> 1, x = j+gm, 0 <j<m-1 and 0 <q,t,t’ s% -1. Define 6, ,¢:Z,, > Z,such that 6, , .(x) = x+jtmfor
every xeZ, under arithmetic modulo n, V,,,= {6, t = 0,1,...,% -1} and for seZ,, V,,(s) =
{00t (5): t=0,1,....- -1} and V, (S) = {V,-(5) : s€S}. Define ‘0’ in V. such that 6,00 Gy, =
Hn,r,t+t1and (Hn,r,toen,r,tl)(x) ( = en,r,t(en,r,tl(x)) = en,r,t(x"_jtym) = (x_"jt,m)'i'jtm = X+j(t+t,)m )
O v t+¢:/(X) Where t+t’ is calculated under addition modulo%. Clearly, for every seZ,, (V;, (), 0)is an
abelian group.

DEFINITION 1.16 [8] Let V(C,(R)) = {Vo,\Vi,Va,....Vn1}, V(K;) = {UoU1Uy,...,Un1},reR and
J:\m,q,t,xeZ, such that gcd(n, r) = m>1, x = j+gm, 0 <j<m-1 and 0 gq,ts% -1. Define 6, ,.+: V(C,(R))
SV(Cp(1.2,....0-1)) = V(K SUCH thatt G, (V) = s jemn AN G e (ioViss)) = (B e (1), G (Vi)
for every xeZ,and seR, under subscript arithmetic reflexive modulo n. Let V,, .= {6, ,,: t= 01,...~
-1} and Y (Cr(R))= {Opre(Co(R)): t = 0,1,....= -1}. Define ‘0’ in V. such that 61,10 6y e,
9n,r,t+tland gn,r,t(cn(R))ogn,r,tl(cn(R)) = n,r,t+tl(Cn(R)) fOf every 6’n,r,tv‘gn,‘r',tflEVTL,T Where i+t iS
calculated under addition modulo % Then (V,(C,,(R)), 0) is an abelian group.

I3

Clearly V,,,-(C,(R)) contains all isomorphic circulant graphs of Type 2 of C, (R), if exist. Let
T2,-(Ch(R))= {C,(R)} v {Cn(S): C,(S) is Type-2 isomorphic to C,(R) w.rt. r}. Thus,
T2, (Ca(R)) = {Cu(R)}H Ot (Cr(R)): Ot (Co(R))= Crn(S) and € (S) is Type-2 isomorphic to
Co(R) Wirt 1, 0 <t<™ 13V (Co(R)) and (T2,(Co(R)), 0) is @ subgroup of (V;,(C,(R)), 0).
Clearly, T1,,(C,,(R)) "T2,,,(C,,(R)) = {C,(R)}. C;,(R)has Type-2 isomorphic circulant graph w.r.t. r
iff 72, (Co(R)) #{Cn (R)} IF T2y, 1 (Co(R)) n {Cru(R)} 2@ iff T2, (Co (R))] > 1.

Definition 1.17For any circulant graph C,(R), if T2,,.(C,(R)) = {C,(R)} then
(T2,,(Cr(R)), 0) is called the Type-2 group of C,(R) w.r.t. runder ‘0’.

Cayley Isomorphism (CI) problem determines which graphs (or which groups) have the Cl-property
and its investigation started with the investigation of isomorphism of circulant graphs. An important
achievement is the complete classification of cyclic Cl-groups by Muzychuk in 1997 [5],[6]. But
study on non-Cl-graphs is not much done. Type-2 isomorphic circulant graphs are clearly graphs

without Cl-property. Theorems 1.10 and 1.11 gave classes of circulant graphs without Cl-property. In
this paper Theorem 2.3 gives new class of circulant graphs without Cl-property.

Effort to obtain more circulant graphs without Cl-property is the motivation for this work. For all
basic ideas in graph theory, we follow [3].

2 MAIN RESULT

THEOREM 2.1Fori = 1 to 5, d; = 5n(i-1)+1 andR; = {5, d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;},
circulant graphscC; ,s,, (R;)are isomorphic circulant graphs, neN.

Proof:We prove that for i = 1 to 5, d; = 5n(i-1)+1 and R; = {5, d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;},
0125n,5,im (C125n(R1)) = C125n(R;+1) Where i+1 is calculated under addition modulo 5.

To simplify our calculation let us consider R; = {5, d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;, 75n-d;,
75n+d;, 100n-d;, 100n+d;, 125n-d;, 125n-5}, d; = 5n(i-1)+1 and i = 1 to 5. In particular,

R; ={1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-5, 125n-1},
R, = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1,80n+1,95n-1,105n+1,120n-1,125n-5},
R; = {5, 10n+1, 15n-1, 35n+1,40n-1,60n+1,65n-1,85n+1, 90n-1,110n+1,115n-1,125n-5},
R, = {5, 10n-1, 15n+1, 35n-1, 40n+1,60n-1,65n+1,85n-1,90n+1,110n-1,115n+1,125n-5},
Rs = {5, 5n-1, 20n+1, 30n-1, 45n+1, 55n-1, 70n+1,80n-1,95n+1,105n-1,120n+1,125n-5}.
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Using the definition of 4, ., we get the following

6125n5n(R1) = O125n,5,({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-5,
125n-1}) = {56n+1, 5, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1, 80n+1, 95n-1, 105n+1, 125n-5, 120n-1} =
R;;

6125n520n(R1) = O125052n({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-
5, 125n-1}) = {10n+1, 5, 15n-1, 35n+1, 40n-1, 60n+1, 65n-1, 85n+1, 90n-1, 110n+1, 125n-5, 115n-1}
= R3;

6125n53n(R1) = O125n53n({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-
5, 125n-1}) = {15n+1, 5, 10n-1, 40n+1, 35n-1, 65n+1, 60n-1, 90n+1, 85n-1, 115n+1, 125n-5, 110n-1}
= R41

6125n5,4n(R1) = O125n5,4n({1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-
5, 125n-1}) = {20n+1, 5, 5n-1, 45n+1, 30n-1, 70n+1, 55n-1, 95n+1, 80n-1, 120n+1, 125n-5, 105n-1}
= Rs.

Now the result follows from the definition of &, ;.

THEOREM 2.2 WhenR; = {5, d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;}, d; = 5n(i-1)+1, i,j = 1 to 5 and
NEN, Oiz5n5,n(Ci25n(R)) = Cizsn(Riyj)Where i+jis calculated under addition modulo 5 and
C1251(R;) are Type-2 isomorphic circulant graphs.

Proof: To prove that a set of circulant graphs {C,,(R)} are of Type-2 isomorphic, it is enough to prove
that every pair of the circulant graphs are different (not the same), isomorphic and not of Adam’s
isomorphic (not of Type-1 isomorphic).

When R; = {5, d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;}, d; = 5n(i-1)+1, 1 <ij< 5and neN,R; = R; iffi =
J- Thus for different i, the set of jump sizes of the five circulant graphs C;,s,(R;) are different and
thereby the five circulant graphs are also different.

In the proof of Theorem 2.1, we have 6,5y 5,in(Ci25n(R1)) = Ci250(Ri+1) Where i+1 is calculated
under addition modulo 5, i = 1 to 5. Similarly it is easy to prove that €5, 5,n(C1250(R2)) =
Ci2sn(Ris2)s  O125n5,in(Ci2sn(R3))= Cizsn(Rix3), Oi2snsin(Cizsn(Ra)) = Cizsn(Riys) and
O125n,5,in(C125n(R5)) = Ciz5n(Riys) = Cizsn(R;) Where R; = {5, d;, 25n-d;, 25n+d;, 50n-d;,
50n+d;}, d; = 5n(i-1)+1, i =1 to 5 and neN. This implies when R; = {5, d;, 25n-d;, 25n+d;, 50n-d;,
50n+d;}, d; = 5n(i-1)+1, i,j = 1 to 5 and neN, G35n5in(C125n(R))) = Cizsn(Riy;) Wherei+j is
calculated under addition modulo 5. This implies that for i = 1 to 5 all the five circulant graphs
C1251(R;) are isomorphic.

To complete the proof we are left with establishing their isomorphism is of Type-2. Now it is enough
to prove that each pair of isomorphic circulant graphs C;,s,(R;) and Ci,s,(R;) for i) are not of
Type-1, 1 <i,j< 5. At first we prove that isomorphic circulant graphs C;,5,(R;) and C;,5,(R,) are
Type-2.

Claim: For R; = {1, 5, 25n-1, 25n+1, 50n-1, 50n+1}, R, = {5, 5n+1, 20n-1, 30n+1,45n-1, 55n+1} and
neN, Ci25,(R1) and C; ¢, (R,) are Type-2 isomorphic.

If not, they are of Adam’s isomorphic. This implies, there exists seN such that C;;s,(sR,) =
Ci25n,(R;) where s =5x-4 or s = 5x-3 or s = 5x-2 or s = 5x-1 and gcd(125n, s) = 1, xeN. Now let us
choose s such that s = 5x-4 such that gcd(125n, 5x-4) = 1, C125,((5x — 4)R;) = Cy35,(R,) and xeN.
This implies, (5x-4){1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1, 100n+1, 125n-5, 125n-
1} = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1, 80n+1, 95n-1, 105n+1, 120n-1, 125n-5} under
arithmetic modulo 125n. This implies, 5(5x-4), (5x-4)(125n-5), 5+125np, and 125n-5+125np, are the
only numbers, each is a multiple of 5, in the two sets for some pi,p.€N,. Thus when s = 5x-4 the
following two cases arise.

Case i 5(5x-4) = 5+125np;, p1e Ny, XeN, 1 <5x-4 <125n-1.

In this case, py =0or 1 or2or3or4since 1 <5x-4 <125n-1 and nxeN. Whenp; =0,5x-4=1; p; =
1, 5x-4 = 25n+1; p; = 2, 5x-4 = 50n+1; p; = 3, 5x-4 = 75n+1; p; = 4, 5x-4 = 100n+1 and in each case,
graph Cy,5,((5x —4)R,) is same as C;,5,(R;). The jump sizes of the circulant graph C;,5,,(sRy)
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corresponding to Adam’s isomorphism when S = 5x-4 = 25n+1, s = 5x-4 = 50n+1, s = 5x-4 = 75n+1
and s = 5x-4 = 100n+1 are given in Table 1.

Case ii 5(5%-4) = 125n-5+125np,, poe Ny, XeN, 1 < 5x-4 < 125n-1.

In this case, p,=0o0r 1 or 2 or 3 or 4 since 1 < 5x-4 <125n-1 and n,xeN. When p, = 0, 5x-4 = 25n-1,;
P2 = 1, 5x-4 = 50n-1; p, = 2, 5x-4 = 75n-1; p, = 3, 5x-4 = 100n-1; p, = 2, 5x-4 = 125n-1 and in each
case, graph Cj,5,((5x —4)R;) is same as C;,5,(Ry). The jump sizes of the circulant graph
Ci25n(SRy) corresponding to Adam’s isomorphism when S = 5X-4 = 25n-1, s = 5x-4 = 50n-1, s = 5x-4
=75n-1, s = 5x-4 = 100n-1 and s = 5x-4 = 125n-1 are given in Table 1.

Consider the case when s = 5x-3 such that C;,5,(SR;) = C125,(R2) Where gcd(125n,5x-3) = 1, 1 < 5x-
3 <125n-1 and xeN. This implies, (5x-3){1, 5, 25n-1, 25n+1, 50n-1, 50n+1, 75n-1, 75n+1, 100n-1,
100n+1, 125n-5, 125n-1} = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1, 70n-1, 80n+1, 95n-1, 105n+1,
120n-1, 125n-5} under arithmetic modulo 125n. This implies, 5(5x-3), (5x-3)(125n-5), 5+125np, and
125n-5+125np, are the only numbers, each is a multiple of 5, in the two sets for some py,p,€ Ny. Thus
when s = 5x-3 the following two cases arise.

Table 1.Calculation of rs under arithmetic modulo 125n w.r.t. R; where s = 5x-i, i= 1,2,3,4.

sr 1 25n-1 25n+1 50n-1 50n+1 75n-1 75n+1 100n-1 100n+1 125n-1
25n+1 25n+1 125n-1 50n+1 25n-1 75n+1 50n-1 100n+1 75n-1 1 100n-1
50n+1 50n+1 100n-1 75n+1 125n-1 100n+1 25n-1 1 50n-1 25n+1 75n-1
75n+1 75n+1 75n-1 100n+1 100n-1 1 125n-1 25n+1 25n-1 50n+1 50n-1
100n+1 100n+1 50n-1 1 75n-1 25n+1 100n-1 50n+1 125n-1 75n+1 25n-1
25n-1 25n-1 75n+1 125n-1 50n+1 100n-1 25n+1 75n-1 1 50n-1 100n+1
50n-1 50n-1 50n+1 25n-1 25n+1 125n-1 1 100n-1 100n+1 75n-1 75n+1
75n-1 75n-1 25n+1 50n-1 1 25n-1 100n+1 125n-1 75n+1 100n-1 50n+1
100n-1 100n-1 1 75n-1 100n+1 50n-1 25n+1 25n-1 50n+1 125n-1 25n+1
125n-1 125n-1 100n+1 100n-1 75n+1 75n-1 50n+1 50n-1 25n+1 25n-1 1
Table 2.Calculation of rs under arithmetic modulo 125n w.r.t. R, where s = 5x-i, i =1,2,3,4.

5n+1 20n-1 30n+1 45n-1 55n+1 70n-1 80n+1 95n-1 105n+1 120n-1
25n+1 30n+1 120n-1 55n+1 20n-1 80n+1 45n-1 105n+1 70n-1 5n+1 95n-1
50n+1 55n+1 95n-1 80n+1 120n-1 105n+1 20n-1 5n+1 45n-1 30n+1 70n-1
75n+1 80n+1 70n-1 105n+1 95n-1 5n+1 120n-1 30n+1 20n-1 55n+1 45n-1
100n+1 | 105n+1 45n-1 5n+1 70n-1 25n+1 95n-1 55n+1 120n-1 80n+1 20n-1
25n-1 20n-1 80n+1 120n-1 55n+1 95n-1 30n+1 70n-1 5n+1 45n-1 105n+1
50n-1 45n-1 55n+1 20n-1 30n+1 120n-1 5n+1 95n-1 105n+1 70n-1 80n+1
75n-1 70n-1 30n+1 45n-1 5n+1 20n-1 105n+1 120n-1 80n+1 95n-1 55n+1
100n-1 95n-1 5n+1 70n-1 105n+1 45n-1 80n+1 20n-1 55n+1 120n-1 30n+1
125n-1 120n-1 105n+1 95n-1 80n+1 70n-1 55n+1 45n-1 30n+1 20n-1 5n+1
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Table 3.Calculation of rs under arithmetic modulo 125n w.r.t. R; where s = 5x-i, i =1,2,3,4.

10n+1 15n-1 35n+1 40n-1 60n+1 65n-1 85n+1 90n-1 110n+1 115n-1

25n+1 35n+1 115n-1 60n+1 15n-1 85n+1 40n-1 110n+1 65n-1 10n+1 90n-1
50n+1 60n+1 90n-1 85n+1 115n-1 110n+1 15n-1 10n+1 40n-1 35n+1 65n-1
75n+1 85n+1 65n-1 110n+1 90n-1 10n+1 115n-1 35n+1 15n-1 60n+1 40n-1
100n+1 | 110n+1 40n-1 10n+1 65n-1 35n+1 90n-1 60n+1 115n-1 85n+1 15n-1

25n-1 15n-1 85n+1 115n-1 60n+1 90n-1 35n+1 65n-1 10n+1 40n-1 110n+1

50n-1 40n-1 60n+1 15n-1 35n+1 115n-1 10n+1 90n-1 110n+1 65n-1 85n+1

75n-1 65n-1 35n+1 40n-1 10n+1 15n-1 110n+1 115n-1 85n+1 90n-1 60n+1

100n-1 90n-1 10n+1 65n-1 110n+1 40n-1 85n+1 15n-1 60n+1 115n-1 35n+1

125n-1 115n-1 110n+1 90n-1 85n+1 65n-1 60n+1 40n-1 35n+1 15n-1 10n+1

Case i 5(5x-3) = 5+125np;, p1e Ny, XeN, 1 <5x-3 < 125n-1.

In this case, py =0o0r 1 or2or3or4since 1 <5x-3 <125n-1 and nxeN. Whenp; =0,5x-3=1; p; =
1, 5x-3 = 25n+1; p; = 2, 5x-3 = 50n+1; p; = 3, 5x-3 = 75n+1; p; = 4, 5x-3 = 100n+1 and in each case,
graph Ci25,((5x —3)R;) is same as graph C;,s,(R;). The jump sizes of the circulant graph
Ci25n(SRy) corresponding to Adam’s isomorphism when § = 5x-3 = 25n+1, s = 5x-3 = 50n+1, s = 5x-
3 =75n+1 and s = 5x-3 = 100n+1 are given in Table 1.

Case ii 5(5x-3) = 125n-5+125np,, p,e Ny, XeN, 1 < 5x-3 < 125n-1.

In this case, p,=0or 1 or 2 or 3 or 4 since 1 < 5x-3 <125n-1 and n,xeN. When p, = 0, 5x-3 = 25n-1;
P2 = 1, 5x-3 = 50n-1; p, = 2, 5x-3 = 75n-1; p, = 3, 5x-3 = 100n-1; p, = 4, 5x-3 = 125n-1 and in each
case, graph Cj,5,((5x —3)R;) is same as C;,5,(Ry). The jump sizes of the circulant graph
C1251,(SR;) corresponding to Adam’s isomorphism when s = 5x-3 = 25n-1, s = 5x-3 = 50n-1, s = 5x-3
=75n-1, s =5x-3 =100n-1 and s = 5x-3 = 125n-1 are given in Table 1.

Similarly when s = 5x-2 and s = 5x-1 it is easy to see that C;,z,,((5x — 2)R;) = C;35,(R;) and
C125n,((5x — 1)Ry)= C125,(R1). Thus €125, (SR1) = Cy35,(R;) When s =5x-4 or s =5x-3 or s = 5x-2

or s = 5x-1 where gcd(125n, s) = 1 and n,xeN. This implies C;,5, (SR;)#C125,(R,) for every seN
such that gcd(125n, s) =1 and neN.

This shows that the isomorphic circulant graphs Cy,5,(R;) and Cy,5,(R,) for Ry = {1, 5, 25n-1,
25n+1, 50n-1, 50n+1}, R, = {5, 5n+1, 20n-1, 30n+1,45n-1, 55n+1} are not of Type-1, neN. This
implies, for R, = {1, 5, 25n-1, 25n+1, 50n-1, 50n+1}, R, = {5, 5n+1, 20n-1, 30n+1, 45n-1, 55n+1}
and neN, C;,5,(R;) and C;,5,(R,) are Type-2 isomorphic.

By similar discussion and calculation it is easy to prove that circulant graphs C;,z,(R;) and
C125n(R;) are Type-2 isomorphic for j = 3,4,5. Thus we could prove that C;,5,(R;) and Cy,s,(R;)

are Type-2 isomorphic for j = 2,3,4,5. Table-i corresponds to calculation of rs under arithmetic
modulo 125n w.r.t R; and R;,4 forj=i,i+1,....4andi=1,2,3,4.

The above discussion and calculations prove that circulant graphs C;,s,(R;) and C125n(R]-) for i #j
are Type-2 isomorphic,i,j=1,2,3,4,5. Hence the result follows.

THEOREM 2.3 Fori = 1to 5, d; = 5n(i-1)+1, 3 <kandR; = {d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;,
5p1,5p,,...,5pk2}, circulant graphsCi,s,(R;)are Type-2 isomorphic and without Cl-property
wheregcd(py,pa,. . .,Pr-2) = 1 andn,py,pz,...,pr2€N.

Proof:Fori=1to5, d; =5n(i-1)+1, 3 <k and R; = {5, d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;}, circulant
graphs Cy,5,(R;) are Type-2 isomorphic, using Theorem 2.2, neN. Lemma 1.5 helps us while
searching for possible value(s) of t such that the transformed graph 6, ,..(C, (R)) is circulant of the
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form C,,(S) for some Sc [1, n/2], the calculation on r; which are integer multiples of m =
ged(n,r) need not be done as there is no change in these 7; under the transformation &, ... This
implies, fori=1to 5, d; =5n(i-1)+1 and R; = {d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;, 5p1,5pz,...,5Pk-2}
circulant graphs C;,5,(R;) are Type-2 isomorphic circulant graphs where 3 <k, gcd(pg,p2,...,px2) =1
and n,p1,p.,....Px2€N. Type-2 isomorphic circulant graphs are graphs without Cl-property. Hence the
result follows.

Table 4.Calculation of rs under arithmetic modulo 125n w.r.t. R, where s = 5x-i, i = 1,2,3,4.

\Sf\ 10n-1 15n+1 35n-1 40n+1 60n-1 65n+1 85n-1 90n+1 | 110n-1 115n+1

25n+1 110n-1 40n+1 10n-1 65n+1 35n-1 90n+1 60n-1 | 115n+1 | 85n-1 15n+1

50n+1 85n-1 65n+1 110n-1 90n+1 10n-1 115n+1 35n-1 15n+1 60n-1 40n+1

75n+1 60n-1 90n+1 85n-1 115n+1 | 110n-1 15n+1 10n-1 40n+1 35n-1 65n+1

100n+1 35n-1 115n+1 60n-1 15n+1 85n-1 40n+1 110n-1 | 65n+1 10n-1 90n+1

25n-1 90n+1 10n-1 65n+1 110n-1 | 40n+1 85n-1 15n+1 60n-1 115n+1 35n-1

50n-1 65n+1 35n-1 40n+1 10n-1 15n+1 110n-1 | 115n+1 85n-1 90n+1 60n-1

75n-1 40n+1 60n-1 15n+1 35n-1 115n+1 10n-1 90n+1 110n-1 65n+1 85n-1

100n-1 15n+1 85n-1 115n+1 60n-1 90n+1 35n-1 65n+1 10n-1 40n+1 110n-1

125n-1 115n+1 110n-1 90n+1 85n-1 65n+1 60n-1 40n+1 35n-1 15n+1 10n-1

Table 5 Calculation of rs under arithmetic modulo 125n w.r.t. R where s = 5x-i, i = 1,2,3,4.
Circulant graphs C125(1,5,24,26,49,51), C125(5,6,19,31,44,56), C125(5,11,14,36,39,61),

\9\ 5n-1 20n+1 30n-1 45n+1 55n-1 70n+1 80n-1 95n+1 105n-1 120n+1

25n+1 105n-1 45n+1 5n-1 70n+1 30n-1 95n+1 55n-1 120n+1 80n-1 20n+1

50n+1 80n-1 70n+1 105n-1 95n+1 5n-1 120n+1 30n-1 20n+1 55n-1 45n+1

75n+1 55n-1 95n+1 80n-1 120n+1 105n-1 20n+1 5n-1 45n+1 30n-1 70n+1

100n+1 30n-1 120n+1 55n-1 20n+1 80n-1 45n+1 105n-1 70n+1 5n-1 95n+1
25n-1 95n+1 5n-1 70n+1 105n-1 45n+1 80n-1 20n+1 55n-1 120n+1 30n-1
50n-1 70n+1 30n-1 45n+1 5n-1 20n+1 105n-1 | 120n+1 80n-1 95n+1 55n-1
75n-1 45n+1 55n-1 20n+1 30n-1 120n+1 5n-1 95n+1 105n-1 70n+1 80n-1
100n-1 20n+1 80n-1 120n+1 55n-1 95n+1 30n-1 70n+1 5n-1 45n+1 105n-1
125n-1 120n+1 105n-1 95n+1 80n-1 70n+1 55n-1 45n+1 30n-1 20n+1 5n-1

C125(5,9,16,34,41,66) = C125(5,9,16,34,41,59) and C125(4,5,21,29,71,76) = C125(4,5,21,29,49,54) are
isomorphic and are of Type 2.

THEOREM 2.4Fori =1 to 5, di = 5n(i'1)+1, 3 Skande’ = {dl', 25n'dl', 25n+di, 50n‘dl‘, 50n+dl‘,
5p1,5P2,...,5Pk2}, (Vi2sn,5(C1250(R;)), 0) is an abelian group wheregcd(py,pa,. . .,Pk-2) = 1, N,P1,P2,. .., Pk-
IS N.

Proof: The result follows from Theorem 2.3 and definition of V,,,.

Let Cy55(1,5,24,26,49,51) = Ry, Cy25(5,6,19,31,44,56) = R,, C155(511,14,36,39,61) = Rs,
C125(59,16,3441,66) = C155(59,1634,41,59) = R, and C155(4,521,29,71,76) =

International Journal of Scientific and Innovative Mathematical Research (1JSIMR) Page 45



V. Vilfred&P. Wilson

C125(4,5,21,29,49,54) = Rs. Then the corresponding Type 2 group is (T21,55(C125(R;)), 0) where
T21255(C125(R;)) = {R1, Rz, R3, Ry, Rs} fori=1,2,3,45.

Open Problem Find T2;,5,5(Ci25,(R;)) when R; = {d;, 25n-d;, 25n+d;, 50n-d;, 50n+d;,
5p1,5P2,. . .,5Pk2},1 <i< 5,d; = 5n(i-1)+1, 3 <k,gcd(p1,P2,-.-.Pk-2) = 1, N,P1,P2,...,Pk2€N.
3 CONCLUSION

In this paper and in [12], [14], we obtained families of isomorphic circulant graphs of Type-2 (and
without Cl-property), each with 2, 3 or 5 copies of isomorphic circulant subgraphs. One can go for
general result on circulant graphs with m;= gcd(n, r;) is odd and > 5.
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