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Abstract: In this paper, we use a different proof technique to prove the Konig's theorem and Max-flow Min-cut
theorem. We consider the linear programming formulation of the problem and show that the optimal values of
primal and dual are equal. We use the total unimodularity property of coefficient matrix and the fundamental
theorem of duality in linear program to drive this equivalence. The total unimodularity of the coefficient matrix
helps in determining the integrality of the solution. we present the proof of the Max-flow Min-cut theorem and
Konig's theorem using the properties of total uni-modular matrices in linear programming. We discuss the
problem of Concurrent Multi-commodity Flow (CMFP) and present a linear programming formulation.
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1. INTRODUCTION

The Multi-commodity flow problem is a more generalized network flow problem. The problem of
finding a maximum flow in a multi-commodity network arises in many network instances. In a Multi-
commaodity flow problem, there exists k >1commodities each having its own source and sink. And
we give an introduction to the Concurrent Multi-commodity Flow problem (CMFP) [15]and present
the linear programming formulation for the problem and its dual. In CMFP, every commodity is

assigned a demand D, , our objective is to assign flows to the commodities so as to maximize a
fraction A such that the flow for any commodity is at least AD, units.

1.1. Preliminaries

Definition 1.1.1 (Unimodular Matrix) A matrix M over real numbers is said to be unimodular if every
square sub matrix of M has determinant equal to 0,1 or -1.

Examples of totally uni-modular matrices,

1 00O -1 -1 0 0 0 1
1 10

0100 1 0 -1 -1 0 O
011

0 010 0 1. 1 0 -1 O
0 01

0 001 O 0 0 1 1 -1

Definition1.1.2. (Linear Program) Let P be a maximization problem. Consider this as the primal.
Then the linear program formulation can be given as MaximizeC™ X .
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Subject to Ax<b.

(1.1.1)

Where A is a mXn matrix and ¢, x,b are column vectors of order n,n, m respectively. C denotes

the transpose of C..

all a12 oo aln Xl Cl
Ay, Ay .. . Ay, X, C,
A= X = cC=
_aml a'm2 ' * ' amn | _Xn a _Cn .

Definition 1.1.3.(Dual of a Linear Program) The dual of the LPP(P ), say D(P ),can be given as

Minimizeb'y .,
R
Y,
Subjectto ATy >c.y =
L Yn

y>0. Where y isa column vector of order m .

by
b,

b

n

Theorem1. (Weak Duality) For any feasible solutions x’ and y' of P and D(P ),c" x' is always less

than or equal to b"y’ .

Proof. For a feasible x'and y’ of P and D(P ), the inequality constraints will be satisfied. Consider

the inequalities in P and multiply with y" on both sides.
Ax' <b
y' AX <y"b
Now, Consider the objective function c'x' of P. We have,
Ay zc =(AY)YX =2y =y A >c"X
Now from equations 1.1.2 and 1.1.3 we have

X <y 'AX <y'b

We can see that y/ b= bTy/ . Since,

Yi Yo - - - Y l =by, +b,y, +by, +...+ by,
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]
Y,
=b b - by, =b"y’
[ Yim
Therefore, €' X' <y" AX' <b'y’ (1.1.6)

Theorem?2: (Strong Duality) If the primal P has an optimal solution, X*, then the dual D(P) also has an
optimal solution, ¥ , such that c'x =b'y"

Theorem3. (Unimodular LP) For the LPP(P), if A is a unimodular matrix and b is integral then some
optimal solution is integral.

1.2. Konig’s Theorem

Theorem4. (Konig’s theorem, [1931]) In any bipartite graph, the number of edges in a maximum
matching equals the number of vertices in a minimum vertex cover.

Proof. Let G(V, E) be a bipartite graph and X,Y be the two partitions ofV . Let |X|=m, |Y|=n
and 1,2,3,....,.n € X, m+lm+2,...m+n €Y.
If E is empty, then the size of both the minimum vertex cover and maximum matching is zero.

Without loss of generality we shall assume that E is non empty and|E| =r. We shall introduce two

variables p and g corresponding to every vertex and edge respectively. The linear program (P) for
finding the maximum matching is as follows,

Maximize ) g (1.2.1a)
(i,j)eE
Subjectto D> g, <1  VieX (1.2.1b)
(i, 1)eE
3 g,<1 VjeY (12.1)
(i, J)eE
g€ 01 V(i,j)eE (1.2.1d)

The first two constraints imply that at most one edge can be selected corresponding to every node.
Here, the given problem is an Integer Linear Program. We relax the integrality constraints on ¢; so

that it can take on decimal values. The resulting LPP, say P’ , is
Maximize ) g
(i, j)eE

Subjectto > ;<1  VieX (1.2.2)

j:(i,))eE

> g;<1 VjeY

i(i, j)eE
q; =0V( j)eE
Let A be the coefficient matrix of the LPP ( P/ ). By Theorem 1.2.1 below,

A is unimodular. Hence by Lemma , there exists an optimal integral solution to P’ Obviously, every
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element of the solution is either 0 or 1. Otherwise it would violate the constraints. Hence optimal
solution of P’ is also optimal solution of P . This is the size of the maximum matching in G .

Consider the LP in equation 1.2.2. We shall derive the dual of this LP formulation. Let p;and p;

where i € X, j €Y be the dual variables corresponding to the first and second set of constraints,

respectively. The matrices corresponding to the primal formulation 1.1.1 and dual formulation 1.1.3
problems are as follows,

C o
0; ;
: Pr
P

[ Prin | (1.2.3)

Where the order of the matrices are, x is rX1, cis rX1,bis (m+n)X1,andyis (m+n)X1. The
optimization function with respect to the definition 1.1.3 can be given as,

—
1 :
1
bTy= . X pm
: pm+1
l .
L Pren | (1.2.4)

From Theorem 3.2.1, we know the coefficient matrix is unimodular. In the matrix A, with respect to
a variable ¢;, every column has exactly two ones corresponding toi™ and j" rows. Thus, in AT

every row has two ones, one in the i column and other in the jth column. So, the set of constraints,

AT y > ¢ , for the dual can be given as follows.

p,+p; =1 v(, j)e E

(1.2.5)
Along with the non-negativity constraints, the dual can be given as,
Minimize D" p, + > p;
ieX jey
Subjectto, p; + p; =1 v(, ))eE (1.2.6)

p, >0 Vie X
p; =0 VjeY

This actually is the LP formulation for the relaxed minimum vertex cover problem that we see below.

Now, consider the problem for finding the minimum vertex cover inG . Then the LPP formulation,

say Q, is given as follows,
Minimize D" p, + > p;
leX IeY (1.2.7)
Subject to, p; + p; =1 v(, j)eE
p,e 01 Vie X
p;e 01 VjeY
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The above given problem is an ILP (Integer Linear Program). We shall relax the integrality

constraints on X;, X; in order to obtain a LP. Let Q’ be the new LP.

The new LP is as follows,
Minimize D" p, + > p;
ieX jey

Subject to, p+p;zl V(i j)eE (1.2.8)

p, =0 Vie X
p; =0 VjeY

Let B be the coefficient matrix on’. It is easy to see that B is the transpose of A. Since A is
unimodular, B is also unimodular. Therefore, by Theorem 1.2.1, Q’ has an optimal integral solution

in which all p;and q; are either 0 or 1. Hence, optimal solution to Q’ is also optimal solution to Q.
That is equal to the size of the minimum vertex cover.Now, by the Theorem 6, both the problems have
same optimal solution.

Lemmal.2.1.The coefficient matrix A of the LPP( P’ ) is totally unimodular.

Proof. Clearly, A has m + n rows and r columns in which first m equations con-tribute the first m
rows and second n equations contribute the remaining n rows. Each column of A has exactly two 1's,
one in the first m rows and one in the last n rows. All other elements are 0. Let D be a square sub-
matrix of order k. We will prove the theorem by using induction on k.

Clearly, for k = 1, |D| = 0 or 1. Assume that all square sub-matrices of order k —1 have determinant

equal to 0, 1 or -1. We shall consider different cases,

(1) If D has at least one column containing only zeros, then |D| = 0.

(2) If D has at least one column containing only one one. Then |D| = £|E| where E is the sub-matrix
obtained from D by deleting the corresponding Column and the row containing the one. By
induction|E| =0, 1 or -1. Hence |D| =0:1or-1.

(3) If every column of D has exactly two 1. In this case, the first 1 comes from the first m rows of A
and the second 1 comes from the later n rows of A. Strictly, every column has exactly a single 1
within the rows that belong to the first m rows of A. So, the by performing row addition on all
these rows, we obtain a row with all ones. The same argument applies for the remaining rows of

D that came from the last n rows of A. Hence the rows of D are linearly dependent and |D| =0
Hence A is unimodular.

1.3. The Max-Flow Min-Cut Theorem

Theoremb. (Ford-Fulkerson, 1956) In a Network G, let f be any maximum flow in G, then 3 a cut
(A, B) for which f(A, B) = c(A,B)

Proof. Let N(V, E, c, s, t) be the network with V| = n and|E|= m. We shall write the linear

programming formulation for the maximum flow.

We want to find the maximal flow that can be sent from the source vertex s to the sink vertex t. Let v
be the value of any flow from s to t and x; be the flow sent along the arc (i,j). Let the vertices be
labeled using integers 1 to n such that the source s is labeled as 1 and the sink t is labeled with n. Then
the LPP(R) corresponding to the maximum flow is,

Maxmize v
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Subject to
DX =D, X —v=0 if i=1
(i,j)eE (k,i)eE
DX— D Xg+v=0 if i=n
(i.j)<E (k.i)<E (1.3.1)
D X— D, % =0 if i=23..,n-1
(i,j)eE (k,i)eE
X <C, V(i j) < E
X; =20 v(, j)eE
v>0

The first constraints imply that the net flow out of the source vertex 1 is equal to v and the second
constraints imply that the net flow into the sink vertex n is v. The third constraints imply that the total
flow into any intermediate vertex is equal to the total out flow of that vertex. By relaxing the equality
in these three constraints, we will obtain the following inequalities.

DX = D X —v=0 if i=1

(i,))eE (k,i)eE

DX = D X +v<0 if i=n

(LDE  (Ki)eE (13.2)
I X = > % <0 if i=23..,n-1
(i.))eE (K.I)eE

Let R’ be the resulting LPP. In any optimal solution of R’ the above three inequalities should satisfy
with equality. Otherwise, by adding all the LHS and RHS we get 0 < 0, a contradiction. Since, on the
LHS for every arc (i, j), x;; is added once and subtracted once, so the sum will result in a zero. So, they

will satisfy with equality. Therefore, the optimal solution of R’ will also be the optimal solution of R.

Consider the LP for Max-flow in equation 1.3.1. If we try to convert this into matrix form, the
corresponding matrices will be,

Now, we shall derive the dual for the above LP in equation. Let U; where 1<i<n be the dual

variables corresponding to the first three set of equations (flow constraints) and y; where (i, J) € E,

be the dual variables corresponding to the fourth set of constraints (capacity constraints), Then the
matrix y is,

U,

y=|u,

Y, (1.3.4)

Therefore the objective function for the dual can be given as,
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0 u,

Ty —

bry=/01]=u, (1.3.5)
G Yij

Consider the coefficient matrix, say A, of the LP formulation for Max-flow. We shall see the
properties of this matrix. There will be (n+m) rows corresponding to m X;; the (n+m) constraints and

m+1 columns corresponding to variables. The coefficient matrix A, will look as below,

1 2 3 & om+l
1 Ay 3 i Qpug |
0 a, a4, g A0
n -1 aZ,n a3,n am+l,n
o1 o0 om0
10 0 1 0
0 0 o0 1 |

Where ;= - lor 0 or 1 2<i<(m+1), V1< j<n.This matrix is actually the transpose of the

coefficient matrix for the Min-cut LP that we see below in equation 3.3.6. The objective function of
the Min-cut is also the same as the function in equation 1.3.5. From this, it is easy to see that the dual
of the Max-flow problem is Min-cut.

Now we shall formulate the linear program(T) for finding the minimum cut capacity as follows,

Minimize Z C; Vi
(ir1)<E

Subjectto —U, +u, >1 (1.3.6)
U—u;+y; 20 V(i j)eE

ue 0,1 Yi

y;€ 01 Vi, j

The solution to the above LPP will result in a cut such that, corresponding to a cut (S,§) of the
network N.

Uy =0ifvertex i €S
—1if vertexie S
y;=1ifieS, jeS
= 0 otherwise (1.3.7)

Now, relax the integrality constraints on U; and Y;; . The resulting LPP(T/) will be

Minimize Z C; Vi
(i.))<E
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Subjectto —u, +u, >1 (1.3.8)

u-u;+y; 20 V(i,j)eE
u; =0 Vi
y; 20 Vi, ]

In any optimal solution to T. (u;,u;) =(0,0) or (1,0) or (L, 1) will imply y; =0and (u;,u;) =(0,1)
imply y; =1and hence T will give the capacity of the cut (S,S).

Now, consider the LPP(T’). Clealrly, this is the dual of the LPP( R’ ). Let B be the coefficient matrix
of T’ .From Lemma 1.3.1 below, B is unimodular. The column vector b of T/ consists either 0’s or
1’s. Then the optmal solution of T/ is also the optimal solution of T.

Now by theorem 6, the optimal values of R’and T'are equal. Hence, the optimal values of R and T
are also equal. Therefore, the maximum flow in the network is equal to the minimum cut in the
network.

Lemmal.3.1. The coefficient matrix B of the LPP(T) is unimodular.

Proof. Consider the matrix B. Clearly B has m+1 rows and n+m columns. Now, let D and E be two
partitions of B, such that D consists of the first n columns and E consists of the second m columns.

The matrix D is order (m-+1) X nand E is of order (m-+1) X m. The matrix D will be as below,

ul uZ un
1] 1 0 -1 ]
2 a21 a2,2 a'2 n
M+1 8n1  Apnag S Wi l
Wherea;=-lor0or1 2<i<(m+1), V1< j<n.And the matrix E will be as below.
yy ool
1[0 0 @ 0]
2 11 0 0
01 0
m+1/0 0 ::i 1

Every row of C contains exactly one 1 and one -1. Every column of D will contain exactly one 1.
Now we shall prove this by induction on the size of the sub-matrix. Let U be the square sub-matrix of
order k of B. For, k=1, the element can only be either 1 or 0 or -1. Assume that all square sub-matrices
of order k-1 have determinant equal to 0 or 1 or -1. Considering for k, the different cases can be as,

(1) U consists of at least one column from D. Every column of D has exactly one 1. Then by deleting
that column and the corresponding row, we can get a matrix of order k-1. Hence |U| =lorOorl.

(2) U consists of columns only form C. Now, if ther exists a row with all zeros or one 1 or one -1,
then by induction we can see that the determinant of U will be 1 or 0 or -1. Otherwise, every row
of U should contain exactly one 1 and one -1. Then by performing the column addition on all the

columns will result in a column with all zeros. Then |U| =0.

2. THE CONCURRENT MULTI-COMMODITY FLOW PROBLEM
The Multi-commodity flow problem is a more generalized network flow problem. In a multi-
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commodity flow problem there are k >1commodities each having its own source and sink pair.
Because of the multiplicity of the commodities, the problem to be optimized can be defined in several
ways. Hence, there exists several variants of the Multi-commodity flow. The problem we are going to
discuss is called Concurrent Multi-commodity Flow Problem (CMFP) [15][12]. In this problem, every
i commodity is assigned a demand D;. Our objective is to maximize a fraction, such that there exists
a flow of D; units for every commodity i. The previously studied maximum flow problem is a special
case of Multi-commaodity flow problem in which the number of commodities is one(k = 1). Below, we
will give formal definitions and linear program formulation of the problem.

2.1. Preliminaries

Definition2.1.1. (Multi-commodity Network) A Multi-commodity Network is a directed graph
G(V,E,c) with vertex set V and an arc set E in which every directed edge (i, j) € E, has a non

negative capacity c(i, j)>0,C:V XV — R". There arek >1 commodities K;,K, _Ky. For each
commodity i, there is an ordered pair (S;,t;) representing the source and sink of that commodity
where (S;,t.)eVXVand s, #t..

The flow of a commodity is similar to that of a flow in a single -commodity flow network. Let f'

represent the i" flow of the commodity.

Definition2.1.2. (Flow of a commodity) A flow of a commodity is a mapping f ' E > R denoted by
f',, or f'(u,v)subject to the following constraints.

(1) f'(u,v) <c(u,v)foreach (u,v) € E (capacity constraint)
) f'(u,v)=—F"(v,u) (skew-symmetry)

3 > f'(u,v)=0 VueV\ s,t (conservation of flow)

veV

The value of the flow of a commodity i is given by| f;|=>_ f'(s;,w).

weV

Definition2.1.3. (Concurrent Multi-commodity Flow Problem) Given a Multi-commodity Network
along with demands D,, D,, D, ..., D, corresponding to the k commodities, the objective is to assign

flow to commoditities so as to maximize a fraction A such that for every commodity i, the value of
the flow of the commodity|fi| is at least AD, . The assignment should satisfy the following
constraints along with the flow constraints,

k .
> fiuv)<c(u,v) Y(u,v)eE (2.1.1)
i=1
2.2. Linear Programming Formulation
Below, we give the LP formulation for the Concurrent Multi-commodity Flow problem(CMFP)
Maximize A
Subject to
k .
> fiuv)<c(u,v) Y(u,v)eE
i=1 (2.2.1)
> flu,w)=0 VIi<i<k YueV - st

weV
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> fi(s;,w)=AD, Vi<i<k

weV

The above formulation is very intuitive and straight forward. We will now see another formulation of
the same problem which uses paths. Let P represent the set of all non-trivial paths in the network and

P, be the set of paths corresponding to the commodity j (paths from s; t0 t;). Let X(cr) be a variable
corresponding to every path o € P . Then, he LPP formulation (primal) can be given as,
Maximize A
Subject to
D x(a)<c(e) VeeE (2.2.2)

aeEX

AD, =) x(@)<0 Vi< j<k

aeP;
X()>0 VaeP

The dual problem for the above linear program can be interpreted as assigning Weights(zj) to the
commodities and lengths (y(€)) to edges such that for any commodity i the length of every path from

S, 10 t; should be at least Z,. The length of a path is given as the sum of the lengths of all the edges in
that path. The LPP formulation for the dual is as follows,

Minimize D.c(e)y(e)

ecE

Subject to
> ye)2z; VaeP, :Vj (2.2.3)

> Djz;>1

1< j<k
I(e)>0 VeeE
;20 Vj
We shall consider the example in the figure 2.1 with two commodities, say K;and K, . Let the

demands be D, and D, respectively. First, the primal formulation of the problem using paths is given.
We shall then derive the dual formulation of the problem.

)

Ke

a

Figure2.1. An example of a two commodity flow network with unit demands on the commodities.

In the example figure, there are two paths form source to sink for each of the commodities K;and K,
. The edges are labeled €;,€,,...,€;. Let us name the paths with respect to edges as follows,
a, —>e -6, -6 —¢,

o, >€6 -6 -6 € (224)
a; —>€;,—€,—€;, —6

a —> 86— —€, —6
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The paths o, &, belong to commodity K;and the paths ¢, «, belong to commodity K,. The LP
formulation for the example is as follows,

Maximize A
Subject to

X(en) + X(ery) < (&)
X(e) + X(ar,) <c(e,)
() + X(a,) <c(e,)
X(en) + X(a,) <c(ey)
X(en) + X(ar,) < c(e,)
x(as) + x(a,) < c(e;) (2.2.5)
X(ar) + X(ar,) < c(8)
X(a3) + X(a,) < c(e;)
X(ar) + X(a,) < C(8)
AD, — x(ey) — X(r,) <0
AD, = X(a;) — x(ar,) <0
X(e;) 20 Vi<i<4

Now, multiply the constraints with the dual variables (y(e)and z;) on both sides.

[X(e) + x(ex,) <c(e)]y(e)

[X(e) + X(ex,) <c(e,)]y(e,)

[X(er) + X(er,) < c(e3)]1y(ey)

[X(er) + X(a;) <c(e))]y(e,)

[X(er;) + X(ery) <c(&5)1y(e5) (2.2.6)
[X(er3) + X(a;) < c(&5)1y(e5)

[X(er;) + X(a;) < c(e;)]1y(e;)

[X(a3) + X(a,) <c(ey)]y(es)

[ﬂ'Dl - X(al) - X(az) < O]Zl

[ﬂ'DZ - X(aa) - X(“A) = O]Zz

By combining the equations on the left hand and the right hand sides we get the following inequality,
[X(er) + X()1y(e) +[X(e) + X(at,)]y (€,) +[X(er) + X(e2,)1y(85) +
[X(e) + x(ex,)]y (&) +[X(ex5) + X(2,)]y (65) +[X(ex5) + X(e,)]y (&) +
[X() + X(a,)1y(&,) + [X(a5) + X(ex,)]Y(&5) +[AD, —X(e) = X(x,)]z, + (2.2.7)

8
[AD, — X(3) — X(ex,)]z, < Zc(ei)y(ei)
i=1
Now, represent the inequality in terms of X(«) .

[y(el) + y(ez) + y(es) + y(e4) - Zl]X(al) +
[y(e)+y(e) + y(e,) + y(e,) —z,]x(ex,) +

[y(&s) +Y(&)+ (&) +y(&) —Z,1x(e%) + (2.2.8)
[y(e) +y(e,) + y(e;) + y(&) — 2,]x(r,) +[D,z, + D,z,]4
DI
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Now, with respect to the objective function of the primal, the dual can be formulated as below,
8
Minimize Zc(ei)y(ei)
i=1

Subject to

y(e)+y(&,)+y(&)+y(e,)-2>0

y(e)+y(es) +y(e;) +y(g) -z >0

y(es) + y(ee) + y(e7) + Y(ea) —Z, 20
y(es)+y(e,)+y(e;)+y(g)—2z,20 (2.2.9)
D,z +D,z, 21

y(e)=>0 V1<i<8

;20 Vi< j<k

This is the resulting LPP formulation for the dual of the example we considered in figure 2.1. The
dual we have given in equation 2.2.3 is a generalization of this resulting formulation.

The Multi commaodity flow problem is very well studied in combinatorics. Unlike single commodity
flow, the structural properties of this problem are not well known when the number of commaodities is

greater than two (k > 2). This problem can be solved in polynomial time using linear programming.
However, the problem of finding an integer flow is NP-Complete when (k > 2).

3. CONCLUSIONS

In this paper we presented the proofs for Konig's theorem and Max-flow Min-cut theorem using a
complete different technique based on the total unimodularity property of the coefficient matrix in
their linear program formulation. Finally, we have briefly discussed about Multi-commodity flow and
the Concurrent Multi-commodity Flow Problem (CMFP). Many more primal-dual relations exist in
graph theory and the approach generalize to investigation into these relations and discovering LP
based proofs for those Min-Max relations in graph theory. Hence, this approach is a general tool and
the results presented here are just sample cases. We have also attempted to apply technique called
Lagrangian relaxation [7] from linear programming to some of these relations in order to gain some
insights into its effectiveness. A possibility is to apply different techniques in combination and try to
investigate the outcome which could lead to interesting observations.
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