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Abstract: The differential geometry of surfaces captures many of the key ideas and techniques characteristic 

of this field. Contact geometry is the odd-dimensional analogue of symplectic geometry in differential geometry. 

It is close to symplectic geometry and like the latter it originated in questions of classical and analytical 

mechanics. Contact geometry has, as does symplectic geometry, broad applications in mathematical physics, 

geometrical optics, classical mechanics, analytical mechanics, mechanical systems, thermodynamics, geometric 

quantization and applied mathematics such as control theory. A conformal map is a function that preserves 

angles locally. Conformal mapping is extremely important in complex analysis, as well as in many areas of 

physics and engineering. The Lagrangian mechanics was time ago expressed in the language of symplectic 

geometr. It is well known that one way of solving problems in classical mechanics is with the help of the Euler-

Lagrange equations. In this study, conformal Euler-Lagrange mechanical equations as representing the motion 

of the object, we found on contact 5-manifolds. Also, implicit solutions of the differential equations found in this 

study are solved by Maple computation program and implicit graphs were drawn for the special value of closed 

function. 

Keywords: Contact Manifold, Mechanical System, Dynamic Equation, Lagrangian Formalism.

 

1. INTRODUCTION 

Differential geometry is a mathematical discipline such that uses the techniques of differential 

calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. A 

dynamical system concept is mathematical or differential geometry formalization for any fixed rule 

which describes the time dependence of a point's position in its defined in space. At any given time a 

dynamical system has a state given by a set of real numbers (a vector) that can be represented by a 

point in an appropriate state space (a geometrical manifold). Also, dynamical systems theory is an 

area of mathematics used to describe the behavior of complex dynamical systems, usually by 

employing differential equations or difference equations. Contact geometry is the study of a geometric 

structure on smooth manifolds given by a hyperplane distribution in the tangent bundle and specified 

by a one-form. Contact geometry is in many ways an odd-dimensional counterpart of symplectic 

geometry. Both contact and symplectic geometry are motivated by the mathematical formalism of 

classical mechanics, where one can consider either the even-dimensional phase space of a mechanical 

system or the odd-dimensional extended phase space that includes the time variable. A conformal 

mapping, also called a conformal map, conformal transformation, angle-preserving transformation, or 

biholomorphic map, is a transformation. Conformal maps preserve both angles and the shapes of 

infinitesimally small figures. In this study, conformal Euler-Lagrange differential equations modeling 

of the dynamic system will be obtained on contact 5-manifolds. Differential geometry of contact 5-

manifolds is determined by the action of on contact 5-manifolds structure. 

Hamilton proved some results on symplectic structures on 4-dimensional manifolds and contact 

structures on 5-dimensional manifolds [1]. Srivastava et al introduced the concept of (ε)-almost 

paracontact manifolds, and in particular, of (ε)-para Sasakian manifolds [2]. Cho et al shown that (X, 

J) is symplectic if and only if the contact structure ξ₁ on ∂X₁ is isomorphic to the standard contact 

structure on the 3-sphere S³ and ∂X₁ is J-concave [3]. Eliashberg et al examined that Lagrangian and 

Hamiltonian intersections in contact geometry [4]. Piercey examined certain canonical constructions 
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of contact manifolds as well as various interactions between symplectic geometry and contact 

geometry [5]  Takamura reviewed the method due to Gel'f and and Fuks to show the finite 

dimensionality of the cohomology ring of the Lie algebra of formal contact vector fields [6]. Bellettini 

examined almost complex structures J that satisfy, for any vector v in the horizontal distribution, 

dα(v,Jv)=0 such that a contact manifold is (M⁵,α) [7]. Janssens and Vanhecke submitted an 

orthogonal decomposition of the vector space of some curvature tensors on a co-Hermitian real vector 

space [8]. Chaubey introduced some geometrical properties of almost contact metric manifolds 

equipped with semi-symmetric non-metric connection [9]. Kodama classified the local structure of 

complex contact manifolds of dimension three with Legendrian vector fields [10]. Piercey proved 

contact manifolds and identify simple examples and basic properties [11]. Doubrov and Komrakov 

announced the complete classification of all real Lie algebras of contact vector fields on the first jet 

space of one-dimensional submanifolds in the plane [12]. Attarchi and Rezaii viewed that a 

comprehensive study of contact and Sasakian structures on the indicatrix bundle of Finslerian warped 

product manifolds is reconstructed [13]. Etnyre explored that any almost contact structure on a 5-

manifold is homotopic to a contact structure [14]. Kasap and Tekkoyun introduced Lagrangian and 

Hamiltonian formalism for mechanical systems using para/pseudo-Kähler manifolds [15]. 

2. PRELIMINARIES 

Definition 1. A pseudo J-holomorphic curve is a smooth map from a Riemannian surface into an 

almost complex manifold such that satisfies the Cauchy-Riemann equation J [16]. 

Definition 2. Let M be a differentiable manifold of dimension (2n+1), and suppose J is a 

differentiable vector bundle isomorphism J: TM→TM such that Jx: TxM→TxM is a almost complex 

structure for TxM, i.e. J²=J∘J=-I where I is the identity (unit) operator on vector field V. 

Definition 3. Symplectic geometry is a branch of differential geometry and differential topology that 

studies symplectic manifolds; differentiable manifolds equipped with a closed, nondegenerate 2-form. 

Symplectic geometry has its origins in the Lagrangian formulation of classical mechanics where the 

phase space of certain classical systems takes on the structure of a symplectic manifold. 

Definition 4. Let V be a vector space. Let ω: V×V→ℝ be a skew-symmetric, bilinear 2-form, 

ω∈Λ²V*. The form ω is nondegenerate if for every v∈V, ω(v,u)=0, ∀u∈V⇒v=0. Note that since ω is 

skew-symmetric ω(v,v)= - ω(v,v), hence ω(v,v)=0. 

Definition 5. A symplectic manifold is a smooth manifold (M) equipped with a closed nondegenerate 

differential 2-form (ω) called the symplectic form. 

The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic 

manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as 

the cotangent bundles of manifolds, e.g., in the Lagrangian formulation of classical mechanics, which 

provides one of the major motivations for the field. 

Theorem 1. Every symplectic manifold (M,ω) of dimension 2n is locally symplectomorphic to an 

open subset of (ℝ²ⁿ,ω₀) and i

n

i i dydx
10 . 

Example 1. An almost complex symplectic manifold is standard Euclidean space (ℝ²ⁿ,ω₀) with its 

standard almost complex structure J₀ obtained from the usual identification with ℂⁿ. Thus, one sets 

zj=x2j-1+ix2j for j=1,...,n and defines J₀ by J₀(∂2j-1)=∂2j,   J₀(∂2j)=-∂2j-1, where ∂j=∂/∂xj is the standard 

basis of Txℝ²ⁿ [16]. 

Definition 6. Let M be a manifold of odd dimension (2n+1). A contact structure is a maximally non-

integrable hyperplane field ξ=kerα⊂TM, that is, the defining 1--form α is required to satisfy 

α∧(dα)ⁿ≠0. Such a 1-form α is called a contact form. The pair (M,ξ) is called a contact manifold. 

Theorem 2. Let M be a 5-dimensional manifold endowed with a contact form and let J be an almost-

complex structure defined on the horizontal distribution H=Kerα, such that dα(Jv,v)=0 for any v∈H. 

Proposition 1. Given a contact 5-manifold (M,α), there exist almost complex structures J such that 

dα(Jv,v)=0 for all horizontal vectors v. 
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3. CONFORMAL GEOMETRY 

The approach for studying conformal field theories is somewhat different from the usual approach for 

quantum and electromagnetic field theories. 

Definition 7. A conformal map or transformations is a function which preserves angles. 

Conformal geometry is the study of the set of angle-preserving (conformal) transformations on a 

space. 

Theorem 3. A conformal manifold is a differentiable manifold equipped with an equivalence class of 

Riemann metric tensors, in which two metrics g₁ and g₂ are equivalent if and only if 

g₂=Ψ²g₁,             (1) 

where Ψ>0 is a smooth positive function. An equivalence class of such metrics is known as a 

conformal metric or conformal class [17]. 

Theorem 4. A conformal transformation is a change of coordinates )(~  such that the metric 

changes by 

gαβ(ζ)→Ω²(ζ) gαβ(ζ).     (2) 

A conformal field theory (CFT) is a field theory which is invariant under these transformations. 

Transformation of the form (2) has a different interpretation depending on whether we are considering 

a fixed background metric gαβ, or a dynamical background metric. When the background is fixed, 

physical symmetry, taking the point  to point )(~ . 

4. COMPLEX STRUCTURES ON CONTACT 5-MANIFOLDS 

Theorem 5. Assume that, on a contact 5-manifold (M,α), given a horizontal 2-form ω is given, that 

satisfies ω∧dα=0 and ω∧ω≠0. 

Here, it should be understood ω is horizontal. Decompose ω=ω₊+ω₋, where ω₊ is the self-dual part 

and ω₋ is the anti-self-dual part and ω∧dα=ω₊∧dα+ω₋∧dα. The notation ‖ ‖ denotes here the standard 

norm for differential forms coming from the metric on the manifold and /2~ . We can 

choose an orthonormal basis for P∈M of the form {e₁=X, e₂=IX, e₃=Y, e₄=IY} and denote by {e¹, e², 

e³, e⁴} the dual basis of orthonormal one-forms. Then dα has the form e¹∧e²+e³∧e⁴. The forms 

e¹∧e²+e³∧e⁴, e¹∧e³+e⁴∧e² and e¹∧e⁴+e²∧e³ are an orthonormal basis for ∧₊². The fact that ω₊ is 

orthogonal to dα implies that ω₊=a(e¹∧e³+e⁴∧e²)+b(e¹∧e⁴+e²∧e³) and ‖ ω₊‖ 2
=2(a²+b²), therefore 

~ =cosθ(e¹∧e³+e⁴∧e²)+sinθ(e¹∧e²+e³∧e⁴) for some θ depending on the chosen point, 

22
cos

ba

a , 
22

sin
ba

b .                  (3) 

Example 2. Then the explicit expression J are, any point v∈p, there exist local coordinates (xi,yj,θ); 

i,j=1,2,3,4 centered at p, 

J(e₁)=cosθe₃+sinθe₄, J(e₂)=-cosθe₄+sinθe₃,  

J(e₃)=-cosθe₁-sinθe₂, J(e₄)=cosθe₂-sinθe₁.                             (4) 

and an easy computation shows that dα(v,J(v))=0 for any v∈P. The above structures (4) have been 

taken from [7]. 

Definition 8. In three dimensions, the vector from the origin to the point with cartesian coordinates 

(x,y,z) can be written as [18]: 

r=xi+yj+zk=x((∂/(∂x)))+y((∂/(∂y)))+z((∂/(∂z))).                 (5) 

Proposition 2. Let ei=∂/(∂xi) be a base on M. J denote conformal to the structure coefficient 

Ω=Ω(x₁,x₂,x₃,x₄),using Theorem 1 and 2; 

J(∂/(∂x₁))=cosθΩ²(∂/(∂x₃))+sinθΩ²(∂/(∂x₄)), 

J(∂/(∂x₂))=-cosθΩ²(∂/(∂x₄))+sinθΩ²(∂/(∂x₃)), 

J(∂/(∂x₃))=-cosθΩ⁻²(∂/(∂x₁))-sinθΩ⁻²(∂/(∂x₂)), 
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J(∂/(∂x₄))=cosθΩ⁻²(∂/(∂x₂))-sinθΩ⁻²(∂/(∂x₁)).                 (6) 

Proof : We examine the holomorphic property at (6). 

J²(∂/(∂x₁))=cosθΩ²J(∂/(∂x₃))+sinθΩ²J(∂/(∂x₄)) 

      =cosθΩ²J(-cosθΩ⁻²(∂/(∂x₁))-sinθΩ⁻²(∂/(∂x₂))+sinθΩ²(cosθΩ⁻²(∂/(∂x₂))-sinθΩ⁻²(∂/(∂x₁)) 

   =-cosθcosθ(∂/(∂x₁))-cosθsinθ(∂/(∂x₂))+sinθcosθ(∂/(∂x₂))-sinθsinθ(∂/(∂x₁))=-(∂/(∂x₁)),                 (7) 

and similar manner it is shown that 

J²(∂/(∂xi))=-∂/(∂xi), i=1,2,3,4.                   (8) 

As seen above; holomorphic structures (J²∂/(∂xi))=-∂/∂xi or J²=-I) are complex. 

5. LAGRANGE DYNAMICS EQUATIONS 

Theorem 6. The closed 2-form on a vector field and 1-form reduction function on the phase space 

defined of a mechanical system is equal to the differential of the energy function 1-form of the 

Lagrangian and the Hamiltonian mechanical systems [19, 20]. 

Definition 9 [21, 22]. Let M be an n-dimensional manifold and TM its tangent bundle with canonical 

projection ηM: TM→M. TM is called the phase space of velocities of the base manifold M. Let L: 

TM→R be a differentiable function on TM called the Lagrangian function. Here, L=T-V such that T 

is the kinetic energy and V is the potential energy of a mechanical system. In the problem of a mass 

on the end of a spring, 2/2xmT   and V=kx²/2, so we have L= 2/2xm -(kx²)/2. We consider the 

closed 2-form and base space (J) on TM given by ΦL=-d(dJL)=-d(J(d)). Consider the equation 

iξΦL=dEL.      (9) 

Where iξ is reduction function and iξΦL=ΦL(ξ) is defined in the form. Then ξ is a vector field, we shall 

see that (9) under a certain condition on ξ is the intrinsically expression of the Euler-Lagrange 

equations of motion. This equation (9) is named as Lagrange dynamical equation. 

Definition 10. We shall see that for motion in a potential, EL=VL-L is an energy function and V=Jξ a 

Liouville vector field. Here dEL denotes the differential of E. The triple (TM,ΦL,ξ) is known as 

Lagrangian system on the tangent bundle TM. If it is continued the operations on (9) for any 

coordinate system then infinite dimension Lagrange's equation is obtained the form below. The 

equations of motion in Lagrangian mechanics are the Lagrange equations of the second kind, also 

known as the Euler-Lagrange equations; 

∂/(∂t)((∂L)/(∂x))=(∂L)/(∂x).         (10) 

Definition 11. We have (∂L)/(∂x)=mx and (∂L)/(∂x)=-kx, so eq. (10) gives kxxm   which is exactly 

the result obtained by using F=ma at Newton's second law for the mechanical problem. The Euler-

Lagrange equation, eq. (10), gives dxdVxm / . In a three-dimensional setup written in terms of 

cartesian coordinates, the potential takes the form V(x,y,z), so the Lagrangian is 

),,(2/)( 222 zyxVzyxmL  . So, the three Euler-Lagrange equations may be combined into the 

vector statement Vxm  . 

6. EULER-LAGRANGIAN MECHANICAL EQUATIONS 

We can be obtained, using Theorem 3,4,6, Euler-Lagrange eq9uations for classical and analytical 

mechanics on contact 5-manifold and its shown that by (TM,g,J). Let (xi,yj,θ); i,j=1,2,3,4 be 

coordinate functions. 

Proposition 4. Let ξ be the vector field characterized by 

.,
4

1 i

i

i
i

i xX
x

X                                            (11) 

on (TM,g,J). Then the vector field defined by 

4

1

4

1
)()(

i
i

i

i
i

i

x
JX

x
XJJ  



Conformal Euler-Lagrange Mechanical Equations on Contact 5-Manifolds 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 45 

      =X¹(cosθΩ²(∂/(∂x₃))+sinθΩ²(∂/(∂x₄)))+X²(-cosθΩ²(∂/(∂x₄))+sinθΩ²(∂/(∂x₃))) 

      +X³(-cosθΩ⁻²(∂/(∂x₁))-sinθΩ⁻²(∂/(∂x₂)))+X⁴(cosθΩ⁻²(∂/(∂x₂))-sinθΩ⁻²(∂/(∂x₁))),         (12) 

is thought to be Liouville vector field on contact 5-manifold (TM,g,J). ΦL=-d(dJL)=-d(J(d)) is the 

closed 2-form given by (9) such that 
4

1i i

i

dx
x

d , dJ:F(M)→∧¹M and dJ=iJd-diJ, 

ii
i

J dx
x

JdJd
4

1
)(

           (13) 

Also, the vertical differentiation dJ is given by d is the usual exterior derivation. Then, there is the 

following result. Here, we can be account Euler-Lagrange equations for classical and analytical 

mechanics on contact 5-manifold (TM,g,J). We get the equations given by 

      dJ=(cosθΩ²(∂/(∂x₃))+sinθΩ²(∂/(∂x₄)))dx₁+(-cosθΩ²(∂/(∂x₄))+sinθΩ²(∂/(∂x₃)))dx₂ 

    +(-cosθΩ⁻²(∂/(∂x₁))-sinθΩ⁻²(∂/(∂x₂)))dx₃+(cosθΩ⁻²(∂/(∂x₂))-sinθΩ⁻²(∂/(∂x₁)))dx₄.  (14) 

Let, we account ΦL 

ΦL=-d(dJL) 

=
4

1i
cosθΩ²((∂²L)/(∂x₃∂xi))+cosθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₃))+sinθΩ²((∂²L)/(∂x₄∂xi)) 

+sinθ2Ω ((∂Ω)/(∂xi))((∂L)/(∂x₄)))dx₁∧dxi 

+

4

1i
(-cosθΩ² ((∂²L)/(∂x₄∂xi))-cosθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₄))+sinθΩ²((∂²L)/(∂x₃∂xi)) 

+sinθ2Ω ((∂Ω)/(∂xi))((∂L)/(∂x₃)))dx₂∧dxi 

+
4

1i
(-cosθΩ⁻² ((∂²L)/(∂x₁∂xi))+cosθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₁))-sinθΩ⁻²((∂²L)/(∂x₂∂xi)) 

+sinθ2Ω⁻³ ((∂Ω)/(∂xi))((∂L)/(∂x₂)))dx₃∧dxi 

+
4

1i
(cosθΩ⁻² ((∂²L)/(∂x₂∂xi))-cosθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₂))-sinθΩ⁻²((∂²L)/(∂x₁∂xi)) 

+sinθ2Ω⁻³ ((∂Ω)/(∂xi))((∂L)/(∂x₁)))dx₄∧dxi,            (15) 

and then we find using 

(a) (f∧g)(v)=f(v)g-g(v)f, (b) (dxi∧dxj)(∂/(∂xk))=dxi(∂/(∂xk))dxj-dxj(∂/(∂xk))dxi=((∂xi)/(∂xk))dxj-

((∂xj)/(∂xk))dxi, (c)(∂xi)/(∂xk)=δik, 

So, 

iξΦL=ΦL(ξ)=ΦL(
i

i

i

x
X

4

1
) 

=-
4

1i
X

i
[(cosθΩ²((∂²L)/(∂x₃∂xi))+cosθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₃))+sinθΩ²((∂²L)/(∂x₄∂xi)) 

+sinθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₄)))dx₁+(-cosθΩ²((∂²L)/(∂x₄∂xi))-cosθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₄)) 

+sinθΩ²((∂²L)/(∂x₃∂xi))+sinθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₃)))dx₂+(-cosθΩ⁻²((∂²L)/(∂x₁∂xi)) 

+cosθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₁))-sinθΩ⁻²((∂²L)/(∂x₂∂xi))+sinθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₂)))dx₃ 

+(cosθΩ⁻²((∂²L)/(∂x₂∂xi))-cosθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₂))-sinθΩ⁻²((∂²L)/(∂x₁∂xi)) 

+sinθ2Ω⁻³ ((∂Ω)/(∂xi))((∂L)/(∂x₁)))dx₄ ].            (16) 

Also, the energy function of system is 

EL=J(ξ)-L=X¹(cosθΩ²((∂L)/(∂x₃))+sinθΩ²((∂L)/(∂x₄)))+X²(-cosθΩ²((∂L)/(∂x₄)) 

+sinθΩ²((∂L)/(∂x₃)))+X³(-cosθΩ⁻²((∂L)/(∂x₁))-sinθΩ⁻²((∂L)/(∂x₂))) 



Zeki Kasap  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 46 

+X⁴(cosθΩ⁻²((∂L)/(∂x₂))-sinθΩ⁻²((∂L)/(∂x₁)))-L,          (17) 

and the differential of EL is 

dEL=
4

1i
([X¹(cosθΩ²((∂²L)/(∂x₃∂xi))+cosθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₃))+sinθΩ²((∂²L)/(∂x₄∂xi)) 

+sinθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₄)))dxi]+[X²(-cosθΩ²((∂²L)/(∂x₄∂xi))-cosθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₄)) 

+sinθΩ²((∂²L)/(∂x₃∂xi))+sinθ2Ω((∂Ω)/(∂xi))((∂L)/(∂x₃)))dxi]+[X³(-cosθΩ⁻²((∂²L)/(∂x₁∂xi)) 

+cosθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₁))-sinθΩ⁻²((∂²L)/(∂x₂∂xi))+sinθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₂)))dxi] 

+[X⁴(cosθΩ⁻²((∂²L)/(∂x₂∂xi))-cosθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₂))-sinθΩ⁻²((∂²L)/(∂x₁∂xi)) 

+sinθ2Ω⁻³((∂Ω)/(∂xi))((∂L)/(∂x₁)))dxi-((∂L)/(∂xi))dxi]).           (18) 

Using iξΦL=dEL (9), we get first equations as follows: 

-X¹(cosθΩ²((∂²L)/(∂x₃∂x₁))+cosθ2Ω((∂Ω)/(∂x₁))((∂L)/(∂x₃))+sinθΩ²((∂²L)/(∂x₄∂x₁)) 

+sinθ2Ω((∂Ω)/(∂x₁))((∂L)/(∂x₄)))dx₁-X²(cosθΩ²((∂²L)/(∂x₄∂x₁))+cosθ2Ω((∂Ω)/(∂x₁))((∂L)/(∂x₄)) 

+sinθΩ²((∂²L)/(∂x₃∂x₁))+sinθ2Ω((∂Ω)/(∂x₁))((∂L)/(∂x₃)))dx₁-X³(cosθΩ⁻²((∂²L)/(∂x₁∂x₁)) 

-cosθ2Ω⁻³((∂Ω)/(∂x1))((∂L)/(∂x₁))+sinθΩ⁻²((∂²L)/(∂x₂∂x₁))-sinθ2Ω⁻³((∂Ω)/(∂x₁))((∂L)/(∂x₂)))dx₁ 

-X⁴(cosθΩ⁻²((∂²L)/(∂x₂∂x₁))-cosθ2Ω⁻³((∂Ω)/(∂x₁))((∂L)/(∂x₂))+sinθΩ⁻²((∂²L)/(∂x₁∂x₁)) 

-sinθ2Ω⁻³((∂Ω)/(∂x₁))((∂L)/(∂x₁)))dx₁=-((∂L)/(∂x₁))dx₁,           (19) 

or 

-cosθ[X¹(∂/(∂x₁))+X²(∂/(∂x₂))+X³(∂/(∂x₃))+X⁴(∂/(∂x₄))](Ω²((∂L)/(∂x₃))) 

-sinθ[X¹(∂/(∂x₁))+X²(∂/(∂x₂))+X³(∂/(∂x₃))+X⁴(∂/(∂x₄))](Ω²((∂L)/(∂x₄)))+((∂L)/(∂x₁))=0,        (20) 

and 

-cosθξ(Ω²((∂L)/(∂x₃)))-sinθξ(Ω²((∂L)/(∂x₄)))+((∂L)/(∂x₁))=0.      (21) 

If we take of the curve α, for all equations, as an integral curve of ξ such that it is ξ(α)=(∂/(∂t))(α). 

We, as similar operations performed at (19), find the following equations: 

dif1. -cosθ(∂/(∂t))(Ω²((∂L)/(∂x₃)))-sinθ(∂/(∂t))(Ω²((∂L)/(∂x₄)))+((∂L)/(∂x₁))=0, 

dif2.    cosθ(∂/(∂t))(Ω²((∂L)/(∂x₄)))-sinθ(∂/(∂t))(Ω²((∂L)/(∂x₃)))+((∂L)/(∂x₂))=0, 

dif3. cosθ(∂/(∂t))(Ω⁻²((∂L)/(∂x₁)))+sinθ(∂/(∂t))(Ω⁻²((∂L)/(∂x₂)))+((∂L)/(∂x₃))=0, 

dif4.-cosθ(∂/(∂t))(Ω⁻²((∂L)/(∂x₂)))+sinθ(∂/(∂t))(Ω⁻²((∂L)/(∂x₁)))+((∂L)/(∂x₄))=0,       (22) 

such that the differential equations (22) are named conformal Euler-Lagrange mechanical equations 

on contact 5-manifold such that this is shown in the form of (TM,g,J). Additionally, therefore the 

triple (TM,ΦL,ξ) is called a conformal Euler-Lagrangian mechanical system on (TM,g,J). 

6. EQUATIONS SOLVING WITH COMPUTER 

The location of each object in space represented by three dimensions in physical space. Three-

dimensional space is a geometric three-parameter model of the physical universe in which all known 

matter exists. These three dimensions can be labeled by a combination of three chosen from the terms 

length, width, height, depth, mass, density and breadth. Any three directions can be chosen, provided 

that they do not all lie in the same plane. So, each vector represents the speed and direction of the 

movement of air at that point. We can solve these equations system (22) using Maple computation 

software. The number of dimensions of the equation (23) will be reduced to three and behind the 

graphics will be drawn. First, implicit function at (23) will be selected as a special. After, the figure of 

the equation (23) has been drawn for the route of the movement of objects in the electromagnetic 

field. 

The solution (22) system found according to the specific value of θ and graph will be drawn. (22) are 

partial differential equations on contact 5-manifolds. 
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(1) L(x₁,x₂,x₃,x₄,t)=(((x₁∗c₂+x₂∗c₄)∗t³+(-c₁∗x3+x₄∗c₃)∗t-x₄∗c₄+x3∗c₂)∗cos(t) 

+((x₁∗c₁+c₃∗x₂)∗t³+(-x₄∗c₄+x₃∗c₂)∗t+c₁∗x₃-x₄∗c₃)∗sin(t)+F₁(t)∗t²)/t², for θ=0 and Ω=t. 

(2) L(x₁,x₂,x₃,x₄,t)=F₁(t)+exp(-i∗t)∗F₂((x₂∗Ω²+x₄∗i)/Ω²,(x₁∗Ω²-i∗x3)/Ω²) 

+exp(t∗i)∗F₃((x₂∗Ω²-i∗x₄)/Ω²,(x₁∗Ω²+x₃∗i)/Ω²), i²=-1, for θ=π and Ω=t.   (23) 

Example 3. Implicit solutions (23) obtained with a special selection of the closed function as follows: 

(1) L(x₁,x₂,x₃,x₄,t)=(cos(t)∗t∗x₄+(t³∗x₂-x₄)∗sin(t)+t³)/t², 

                (24) 

(2) L(x₁,x₂,x₃,x₄,t)=((x₁∗t³+x₃∗t-x₃)∗cos(t)+(x₁∗t³-x₃∗t-x₃)∗sin(t)+t³)/t². 

    (25) 

7. CONCLUSION 

A classical field theory explains the study of how one or more physical fields interact with matter 

which is used quantum and classical mechanics of physics branches. Also, the classical theory of 

electromagnetism deals with electric and magnetic fields and their interaction with each other and 

with charges and currents. An electromagnetic field is a physical field produced by electrically 

charged objects. How the movement of objects in electrical, magnetically and gravitational fields 

force is very important. For example, on a weather map, the surface wind velocity is defined by 

assigning a vector to each point on a map. So, said that each vector represents the speed and direction 

of the movement of air at this point. In this study, the conformal Euler-Lagrange mechanical 

equations system (22) derived on a generalized on contact 5-manifold may be suggested to deal with 

problems in electrical, magnetically and gravitational fields for the path of movement (24), (25) of 

defined space moving objects [23, 24]. 
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