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Abstract: C. Park [8] introduced the term of quasi 2-normed space, furthermore he proved few properties of
quasi 2-norm. M. Kir and M. Acikgoz [2] elaborated the procedure for completing a quasi 2-normed space, and
in [4] are considered families of quasi-norms generated by quasi 2-norm and are also proven few statements
about them. In this paper are proven inequalities of Pecari¢-Raji¢ type in quasi 2-normed space. Further, in
p—normed space is considered the case for n>2 vectors, and in quasi-normed space are separately

considered the cases for n=2 vectors and n>3 vectors.
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1. INTRODUCTION

S. Géhler [1] introduced the 2-normed spaces. One of the axioms of the 2-norm is the parallelepiped
inequality, which is actually a fundamental one in the theory of 2-normed spaces. Precisely this
inequality (analogously as in the normed spaces), C. Park has replaced with a new condition, which
actually means that he gave the following definition for quasi 2-normed space.

Definition 1 ([8]). Let L be a real vector space with dimL>2. Quasi 2-norm is a real function
l--]l: Lx L —[0,0) such that:

a) ||xy|>0,forall x,yeL and || x,y|=0 if and only if the set {x, y} is linearly dependent,
b) Ix ylI=ly. xll, forall x,yelL,

C) llax,y|Heal-]| %y, forall x,yeL and for each « € R,and

d) It exists a constant C >1 such that || x+vy,z|I<KC(|x,z]||+|| y,z||), forall x,y,zeL.

The ordered pair (L,||--||) is called a quasi 2-normed space. The smallest possible number C such
that it satisfies the condition d) is called a modulus of concavity of the quasi 2-norm ||-,-|| .

Further, M. Kir and M. Acikgoz [2] give few examples of trivial quasi 2-normed spaces and consider
the question about completing the quasi 2-normed space, and in [4] is proven the following Lemma
which will be used while proving the inequalities of Pecari¢-Raji¢ type.

Lemma 1 ([4]). If L be a quasi 2-normed space with modulus of concavity C>1, then for each n>1
and for all z,%,%p,....X, €L

n n

13 %, z||< CHIO9200-DT 5 7). 1)
i=1 i=1

holds.

Further, C. Park gave a characterization of quasi 2-normed space, i.e. proved the following theorem.

Theorem 1 ([8]). Let (L,||-,-||) be a quasi 2-normed space. It exists p, 0< p<1 and an equivalent
quasi 2-norm |[|-,-||| over L such that
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I+ y,z P <% 2P + Ny z 1P, )
holds, forall x,y,zeL.

Definition 2 ([8]). Quasi 2-norm defined as in Theorem 1 is called (2, p) —norm, and a quasi 2-normed
space L is called (2, p) —normed space.

2. INEQUALITIES IN QUASI 2-NORMED SPACE

Theorem 2. Let (L,||--||) be a real quasi 2-normed space with modulus of concavity C>1. If
ai€R, z,x €L, for i=12, then

I3 apx,z]l<C L RENE ||2x.,z||+CZ|a. o -2 |3 @)
i=1 i=1

max {4 IIZX.,ZII O~ |- o2 IS i - 4)

ke{1,2} i=1 i=1

Proof. For each k e{1,2} it holds true that
||ZO{,X,,Z|| ||akle +Z(al )%zl
i=1 =l

2
SCIIOZkZXi,ZIIJrC 12 (@i — )izl
i—1 i—1

2 2
2
<Clog [T % 14C° Xlag — ey |-l % |l
i—1 i—1

If we take a minimum, for the right side in the latter when k e{1,2}, we get the inequality (3).
For each k e{1,2} it is satisfied that

2 2 2
| 2 ozl 2 aixi + 2 (o — )%, 2|
i-1 i-1 i1
2 2
<Cl XX, z[|+C || 2 (e — )%, ||

i=1 i=1

2 2
2
<Cl| XX, zl+C° Xl — i |-l %, 2],
i=1 i-1

lo|
o IIZX.,ZII CZlak—a.l IIX.,Z||<IIZw.X.,ZII
i=1 i=1

If we take a maximum for the left side in the latter, when k e{L,2}, we get the inequality (4).

Corollary 1. Let (L,||--]]) be a real quasi 2-normed space with modulus of concavity C>1. If
z,x; €L, for i e{1,2} are such that the sets {z,x;}, 1=12 are linearly independent, then

2
||_§1”Xi%”,znsc min (e Z”[||zx.,z||+cz|||xk 2|l -l %, 2 1T}, (5)

kefl,2 i=1

arax e Z”[C ”ZXI’Z” Clellxk vzl - ||><|'Z|||]}<|IZ||X Fik (6)
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Proof. Let ¢ = i1=12. If in the inequalities (3) and (4) we substitute the above expression for

IIX Zl|’

a;, 1 =12 then we obtain the inequalities (5) and (6), respectively.

Corollary 2. Let (L,||--|[) be a real quasi 2-normed space with modulus of concavity C>1. If
z,x €L, for ie{l 2}, then

IIZIIX. I %, z[<C mln {”Xk z||- IIZX.,ZII+CZIIIX.,ZII 1%, z Il -1 %5, Z 113 (7
i=1 kefl,2 i=1 i=1
l1% .2l
max Xi,Z||-C Xy, Z Xi,Z X, z||}< X || %,z 8
ke{12}{ IIZ izl ZIII oz =1 z I kgL z 11} IIZII il %zl (8)

Proof. Let ¢ =|| %, 2,1 =12 . If we substitute the above expression for ¢;, =12, in the inequalities
(3) and (4), then we obtain the inequalities (7) and (8), respectively.

Corollary 3. Let (L,||--|[) be a real quasi 2-normed space with modulus of concavity C>1. If
z,x €L, for ie{l 2}, then

2 2 2 2

CCXI%.zl-I1X xi.zl) min (% z[<C? .z IP=11 Xl %zl %, 21l 9)
i=1 i=1 kefL2} i=1 i=1
2 , 2 )2 2

CCCXlx,zlI" =1 X%, zll %, 2 1) < (C2 XM, zlI=11 2%,z 1) max [ x, z]]. (10)
i=1 i=1 i=1 i=1 ke{1,2}

Proof. Let I(errEir12}||xk,z||:|| xko,z|| and o =%, z||, 1=12. Then, the proof of the theorem 2,

1,

implies the following inequality

IIZIIX.,ZIIX.,ZII<CIIXk .zl IIZX.,ZII ~C? %, ZIIZIIX.,ZIIJrC ZIIX.,ZII
i=L i=

which is equivalent to the inequality (9).
Let max |Ix.z|l=ll %, .zl and o =[x, z|l, i=12,...,n. Then, the proof of the theorem 2, implies
kefL,2}

the following inequality

1%y 21l IIZXuZ||<C||ZIIX.,ZIIX.,Z||+C (RS Z”Z”XI'Z”_C ZIIX.,ZII
=1 i=1 i=1

which is equivalent to the inequality (10).

Theorem 3. Let (L,||--][) be a real quasi 2-normed space with modulus of concavity C>1 and
n>2.1f ¢jeR, z,x €L, forie{l2,..,n}, then

IS e, z[<C  min REAE 13 %, 2| +CHOB DI o0 o 11,210 (11)
i=1 kefl..., i=1 i=1

max {12! k'an 2]|- CHIO% 21 gy |- x.,z|[}<||2a.x.,z|| (12)
kefl,...n} i=1 i=1

Proof. For each k e{L,2,...,n} it s true that
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IIZa.X..ZII ||ak2x. +Z(0¢| )%, 2|

i=1 i=1

SCllakZXi,leJrC Il 2 (& —e )%, 2|
i1 ik

n
11 -2
<Clay |- X %, 2| +C-CH9"2D 57 o — ey |- |1, 2
i=1 i#k

n n
=Cloy |- 2 %, 2] +CH0% DN i g 1], 2).
i=1 i=1

If we take the minimum for the right side in the latter when k €{L,2,...,n}, we get the inequality (11).
For each k e{L,2,...,n} it is true that
I Zakxl,z lI=ll Zalxl + Z(ak ;)% |
i=1 i=1

sC||Zaixi,z||+C | 2 (e — )%, 2]
i1 ik

n
<C|I Y%, z[|+C -l s 6 —oi |- %, 2|
i=1 izk
n n
<C(I Y i, 2 || +CH 102DV oy — i |- |1 3, 2 ),
i=1 i=1
i.e. the inequality

""k'nzx.,zn L0021 $ o0 g |- 1%, 211 < S e 2
i=1 i=1

If we take a maximum for the left side in the latter when k e{L,2,...,n}, we get the inequality (12).

Corollary 4. Let (L,||--||) be a real quasi 2-normed space with modulus of concavity C>1 and
n>2. If z,xeL, for ief,2,..,n} are such that the sets {z,x},i=12,.,n are linearly
independent, then

||z”X zlisC, min {rls Z”(||2x.,z||+cl+“°92‘“ 2 ezl 1.2 103, (13)
----- i=1
1 L+{log, (n-2)] _
’’’’’ & {rigl@ IIZX.,ZII c %III Xzl =%,z l1D} ||2”X el (14)
Proof. Let ¢ =”X_—12”, i=1,2,...,n. If we substitute the above expression for ¢;,i=12,..,n, in the
i

inequalities (11) and (12) then we obtain the inequalities (13) and (14), respectively.

Corollary 5. Let (L,||--|[) be a real quasi 2-normed space with modulus of concavity C>1 and
n>2.1f z,x;elL,forie{l2,..,n}, then

13 11, 2]|<C Jin Lzl 1S %, 2]l +CHI0% -0 e 21—l xe, 2% 23 (15)

i=1 i=1 i=1
max {IX Z“nzx.,zn CBI000-2T S 1 2l 21116, 2 < 3% D% 2. (16)
kefl,...,n} i=1 i=1
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Proof. Let ¢ =|| x;,z||,i=12,...,n. If we substitute the above expression for ¢;,i=12,...,n, in the
inequalities (13) and (14) then we obtain the inequalities (15) and (16), respectively.

Corollary 6. Let (L,||--|) be a real quasi 2-normed space with modulus of concavity C>1 and
n>2.1f z,x;elL,foriefl?2,..,n}, then

130,21, 2| -C 2080215 212 < ()3 x;, 2 ~C v 2”znx b, min lxezll,  (7)
i=1 i=1 i=1
(||zx || -c#Tog(n- 2”znx zI) max 1, z||<cnz||x.,z||x.,z|| R0y 22 (18)
i=1 i=1 k=L,.., i=1 i=1
holds true.
Proof. Let  min || X, z|=l X, z|l and e =||%,z||, 1=12,..,n. Then the proof of theorem 3,
ke{L,2,...,n} 0

implies the following inequality
d d 24[log, (N-2)] < 2 ~24l0g,(n-2)] 0
I 2 1%, 2%, 21 Cli g 211X %, 21 +C 71092 > Il 2| —C =092 Il Xk 211 2211 2
i1 i=1 i=1 =1
which is equivalent to the inequality (17).

Let max ||%zl=l%.,z]l and ¢ =||%;,z], i=12,..,n. Then the proof of theorem 3, implies
kefL,2,....n} 0

the following inequality
1% 21l ||2x.,z||<cnznx.,z||x.,z||+cz+“°92(” M %, z||2||x. 2| -C 200D 3 72
i-1 i=1
which is equivalent to the inequality (18).

Remark 3. The inequalities (5), (6), (13) and (14) are actually inequalities of Pecari¢-Raji¢ type in
quasi 2-normed space.

Theorem 5. Let L be (2, p) —normed spaceand n>2. If o eR, z,x;eL,3a i€{l,2,...,n}, then

n

I > ei%,z[P< ~ min {IaklpllZX.,lep+Z|a. o 1Pl %i, 2 1P} (19)
i=1 kefL2,... i=1 i=1

_ max {Iakl IIZX.,ZIIIO Zlak—a.l IIX.,ZIIp}<|IZa.X. Z||P. (20)
iefl2,..., i=1 i=1 i=1

Proof. For each k €{1,2,...,n} it holds true that
n n n
1Y i, 2Pl e X% + X (e — )% 2|
i=1 i=1 i=1

n n
Do X % 21P +11 Y (e - )i, 2P
i-1 i1

n n
Loy IPI1 Y %, 2P + X e — e 1Pl %, 2P
i1 i1

If we take a minimum for the right side of the latter, when k €{1,2,...,n}, we get the inequality (19).
For each k e{l,2,...,n} the following is satisfied
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I Zakx,,z||p_|| Za,x, +Z(a'k _aI)XI’Z”

i=1

< Zaixilzllp +|| Z(Ofk —o5)¥%, 2P
i=1 i=1

n n
Y %, zlIP + X~ P -l %, 2P,
i—1 i—1

i.e. it holds true that

n n n
Loy 1P %, 2 1P =Xl =i IP16, 211 <l Y e, z 1|,
i=1 i=1 i=1

If we take a maximum for the left side of the latter, when k €{L,2,...,n}, we get the inequality (20).

Corollary 7. Let L be (2, p)—normed space and n>2. If z,x; €L, for ie{l,2,...,n} are such that
the sets {z,x;},1=12,...,n are linearly independent, then

S 7|IP<  min %,z ||P + i, 2 =11 %5, 2] | P 21

”E[”X"Z” ” kefL2,...} “Xk ”p[”z i ” %l” ks ” || i ”l ]} ( )
p p p

max ,Z Xy, Z Xi,Z < ,Z 22

12K} ”Xk ”p[“Z i Zll Z||| o ZI=10 Z I3 ||Z||X 2| [ (22)

Proof. Let o =—1—,i=12,.,n. If we substitute the above expression for ¢;,i=12,...,n in the

[CEIR

inequalities (19) and (20), then we obtain the inequalities (21) and (22), respectively.
Corollary 8. Let L be (2, p) —normed space and n>2.If z,x €L, for ie{l,2,...,n}, then

||Z||X|,Z||X|,Z||p< min {||Xk lepIIZanllp+Z|I|X|,Z||—||Xk z|I1Pll %, 211°}, (23)

i=1 kel i=1 i=1

o max {”Xk ZII'OIIZX.,ZIIIO Z|||X|’Z||—||Xk z|I1PI X.,lep}ﬂlle X,z %, z||P . (24)
i=1 i=1

Proof. Let ¢ 5| Xj,z||,1=12,...,n. If we substitute the above expression for ¢;,i=12,...,n in the
inequalities (21) and (22), then we obtain the inequalities (23) and (24), respectively.

Remark 4. The inequalities (21) and (22) are actually inequalities of Pecari¢-Raji¢ type in
(2, p) —normed space.

3. CONCLUSION

The above proved inequalities are only a few possible generalizations of plenty of potential
generalizations of well known inequalities into 2-normed spaces. It is logically to be asked the
following question:

Whether and which other inequalities can be generalized into 2-normed spaces?
Giving and proving such the generalizations can be subject of lots of further researches.
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