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Abstract: Let G = (V, E) be a simple Graph. The vertex-edge domination polynomial of graph G is
IV(G)I .

Die(G, X) = 3 dye(G. ) x', where d,(G, i) is the number of vertex-edge dominating sets of G with
i=7,(G)

cardinality i and x.(G) is the vertex-edge domination number of G. In this paper we derived a formula for

finding the vertex-edge domination polynomial of Lollipop Graph L,; and some interesting results are

established.
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1. INTRODUCTION

Let G = (V, E) be a simple graph of order n. A set S — V is a dominating set of G, if every vertex
in V\S is adjacent to atleast one vertex in S. The domination number of a graph, denoted by y(G),
is the minimum cardinality of the dominating sets in G. A set of vertices in a Graph G is said to be
a vertex-edge dominating set, if for all edges e € E(G), there exists a vertex v e S such that v
dominates e. Otherwise, for a graph G = (V, E), a vertex u € V(G) ve - dominates an edge vw <
E(G) if (i) u=voru=w (uisincident to vw) or (ii) uv or uw is an edge in G (u is incident to an
edge is adjacent to vw).

The minimum cardinality of a ve-dominating set of G is called the vertex-edge domination
number of G, and is denoted by y,.(G).

The Lollipop Graph is the Graph obtained by joining a complete Graph K, to a path graph P,
with a bridge and it is denoted by L ;.

Let L, be the Lollipop Graph with n + 1 vertices. In the next section, we construct the families of
the vertex-edge dominating sets of Lollipop Graphs. In section 3, we use the results obtained in
section 2 to study the vertex-edge domination polynomial of Lollipop Graphs.

2. VERTEX EDGE DOMINATING SETS OF LOLLIPOP GRAPHS

Definition: 2.1

The lollipop Graph is the Graph obtained by joining a complete Graph K, to a path Graph P; with
a bridge and it is denoted by L, ;.

Example 2.2

v Va ¥g
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Vertex-edge dominating sets of cardinality 1 are
{vi}, {v2}, {vs}, {va}
dve (L4, 1 1) = 4
Vertex-edge dominating sets of cardinality 2 are
{vi, o}, {1, V3}, {v1, Va}, {V1, Vs}, {V2, V3}, {Vvo, v4}, {va, v5},
{Vva, Va}, {3, Vs}, {V4, Vs}.
ooOve(Lg, 1, 2) =10
The number of vertex-edge dominating sets of cardinality 3 is
dve (L4,1, 3) = ( 2 ) =10

The number of vertex-edge dominating sets of cardinality 4 is

dve (La1, 4) = ( i ) =5

The number of vertex-edge dominating sets of cardinality 5 is
dve (L, 1, 5) = ( g ) = 1.

Theorem 2.3

Let L, be the Lollipop Graph with n + 1 vertices, Then the vertex-edge dominating sets of
the lollipop Graph is

(n+1)
. J—l,r =1
\

K
(n+1
t

,1<r < n+1
r

(
dve (I—ny 1 n) = J
t

Proof:

Let L, be a Lollipop Graph with n + 1 vertices. Let the vertices of Ly,1 as vy, Vo, . . ., Vi, Vo+1,
where v;is of degreen, 1 <i<n. v, is avertex of degree n + 1 and v, . 1 is a vertex of degree 1.
V(Ln,1) ={V1, V2, . . ., Vi, Vet } S given in fig.

"'I.l. - L] o 1"I|'|

{vi}, {v2}, . . ., {vi} are the vertex-edge dominating sets of cardinality 1.

.. The minimum cardinality is 1
Yve(l—nal) =1

. Number of vertex-edge dominating sets of cardinality 1 is ( n . ! )— 1=n

Any two vertices of V(Ln,1) ={V1, V2, . . ., Vo, Vner} COver all the vertices and edges of Ly,;.

.. Number of vertex-edge dominating sets of cardinality 2 are ( n 2+ ! ) continuing like this, we
get,

Number of vertex-edge dominating sets of cardinality n + 1 are ( n o+ 1 )

n + 1
Hence,
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f(n+
dve(Lnylyn)_lL
(nJr J,1<r < n+1

3. VERTEX-EDGE DOMINATION POLYNOMIAL OF LOLLIPOP GRAPHS
Definition: 3.1

Let dye(Ln1, 1) be the number of vertex-edge dominating sets of Lollipop Graph L, with
cardinality i. Then, the vertex-edge domination polynomial of L, is

V(LI _
Dve(l—n,lyx)z Z dve(Lnyl'i)xl'
=75 (L)
Example: 3.2
V]
Vs Vg
V3 ]
k] L

Vertex-edge dominating sets of cardinality 1 are
{vi}, {va}, {va}, {va}, {vs}
dve(L5’ 1, 1) =5
Vertex-edge dominating sets of cardinality 2 are
{v1, o}, {v1, va }, {v1, Va}, {v1, s}, {V1, Ve}
{va, vs}, {v2, Va}, {V2, Vs }, {V2, Ve}
{va, va}, {vs, vs}, {va, Ve}, {Va, Vs}, {Va, V6}.{Vs, Ve}
dve (L5,11 2) =15
The number of vertex-edge dominating sets of cardinality 3 is
(6) 6x5x 4

dve(LS,ly 3) = L ) J = =20

1x2 x3
The number of vertex-edge dominating sets of cardinality 4 is

(6) 6 x5

dve(LS,ly 4) = L A J = =15

1x2
The number of vertex-edge dominating sets of cardinality 5 is

dve(l—s,ly 5) = [ E J =6

The number of vertex-edge dominating sets of cardinality 6 is

due(Ls 1 6) =[:j -1

Vertex edge domination polynomial of Ls 4 is

Iv(Ls, I
Duwe(ls,1, X)= > d, (L, i)x
=7, (Ls,y)
= 5x + 15x% + 20x3 + 15x* + 6x°+ x°
=1+6Xx+15x2+ 20+ 15x* +6x°+ X8 —x - 1
=(1+x°-(1+x)
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Vertex-edge domination polynomial of Ly, is

(L, I
S, (L, . DX
1= 70 (Lyy)

5

=3 d, (L, X

i=1

= 4x + 10x? + 10x® + 5x* + x°
=1+5x+ 102+ 10x3 +5x* +x°— 1 —x
=(1+x)°-(1+X)
Vertex-edge domination polynomial of Ls,; is
Due(Ls,1, X) = 5x + 15x% + 20x° + 15x* + 6x° + Xx°
=1+ 6x + 15x% + 20x3 + 15x* + 6x° — x° -1 — x
=(1+x)°-(1+X)

DVE(L4111 X)

In general,
Vertex-edge domination polynomial of L, 1, n > 3is
DVe(Lr‘Iyly X) = (1 + X) n+1_ (1 + X) .

Theorem : 3.3

Let Ly,; be the Lollipop Graph with n + 1 vertices, then vertex-edge domination polynomial

of the Lollipop Graph is Dye(Ln,1, X) = (1 +X) ™= (1 +x), n> 3.
Proof:
VL, )l
Dve(l—nyly X)= z dVE(LM,i)x‘
=7 (Loy)

n+1

Z dve(Ln,l’ i)X‘

n+1

dve(Ln,l, 1) Xl + z d, (L, ix'

i=2

- [(nf 4 1JX+.H§+:(H'+1)i (Theorem 2.3)

7 e (P AR (7 e (g 2
N LA L ER SR
LT e (P (e (0

= —x—1+(1+x)"*!
(1+x)"*'=(1+x),n>3.

Proposition: 3.4

Let L, be the Lollipop Graph with n + 1 vertices, Then Dye(Ly1, - 1) = 0.
Proof:
From theorem 3.3,
the vertex-edge domination polynomial of Lollipop Graph L,,; is
Due(Lns, X) =(L+X) "™ = (1+x)
Due(Lng, -1) =(1-1)""*—(1-1)
=0

Result: 3.5

n+1
d

- . Dve(l—n,la X) = (n + 1) !

an+1

Proof:
We know that
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Dve(l—n,la X) = (1 + X) n (1 + X)
D.w.r. to X,

d
—Dye(Lns, X) =(n+1)(1+x)" -1
dx

D.w.r. to X,
2

d
- Dve(l—n,la X) = (n + 1)n (1 + X) n-1
dx

n

-i;DwﬂﬂL@ =(n+n(n-1)...(n—(=2) @ +x" D
dx
=(n+1)n(nh-1)...2(1+x)

n+1

——Due(lny,X) =(n+1)n(n-1)...2x1

n+

=(n+1)!
Theorem: 3.6
The vertex-edge dominating roots of Lollipop Graph L, are -1,
cos2(k +1)=n 14 sin 2(k+1)=n K=0,1.2....n-1

n n
Proof:

The vertex-edge dominating roots of the Lollipop Graph L, ; are obtained by putting

Dye(Ln1, X) =0
L@+t —(1+x)=0
1+x)[1+x)"-1]=0
=1+x=0,1+x)"-1=0
=>x=-1,1+x"=1

Llex=1
= (cos 2m + i sin2mw)
= [cos(2kn + 27 ) + isin(2kn + 27)] "
where Kk is an integer.
=[cos2(k + 1) m+isin2 (k + 1) x] ¥

=c052(k+1)n+isin2(k+l)n,kzo’]_'z,_,.,nfl
n n
2(k + 1 in2(k+1
gz SoskrDm g2k DT gy o1

n n

1/n

.. . cos2(k+1)=n
.. The vertex-edge dominating roots of lollipop Graph L,; and -1, ——— -1 +

n

isin 2( k 1
o2k D" o012, n-L

n
4. CONCLUSION

The vertex-edge domination polynomial of a Graph is one of the algebraic representation of the
Graph. This paper induces the concept of vertex-edge domination polynomial of Lollipop Graphs
Ln:. Similarly we can find vertex-edge dominating sets and vertex-edge domination polynomials
of some specified Graphs.
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