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Abstract: The paper presents and proves several theorems that are related to calculating a lowest 

common ancestor (LCA) of nodes and a path connecting two nodes in a complete binary tree. The proved 

theorems involve in an analytic formula to calculate the LCA of two nodes, an analytic formula to compute 

a path connecting two nodes and a formula to estimate the bound of a path in a complete binary tree. Some 

other theorems and propositions that depict the distribution of nodes and their LCAs are also given. All the 

theorems and proposition are strictly deduced by means of mathematical deductions. The formulas and the 

related theorems can provide an analytic approach to analyze problems related to the LCA and the path in 

a complete binary tree. 
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1. INTRODUCTION 

Computation of a path connecting two nodes in a graph or a tree has been a topic in both discrete 

mathematics and computer science even since 1950s. During the past more than half a century, 

people have developed a series of algorithms to find the shortest path, as the bibliographies [1]-[2] 

summarized and introduced, the longest path, as the bibliography [3] summarized, and other path-

related problems [4]. Approximately estimating, there may be more than a thousand 

bibliographies that are involved in investigation of the issue.  

When computing a path in a rooted-tree, one will inevitably met another old and fundamental 

problem: computation of an LCA of two or more nodes. Actually, computation of LCAs is the 

key to solve the problem of computing a path in a rooted-tree, as illustrated and stated in 

bibliographies [5]-[11].  

Like the problem of path-computation, people have also developed different algorithms to LCA-

computation, as introduced in bibliographies [12]-[14]. However, when one has a look into 

bibliographies of either path-computation or LCA computation, he will immediately see that, the 

a common trait appears in these bibliographies, that is to perform the computation by way of 

computer searching of recursions or iterations; few bibliographies give an analytic formula for the 

computations, even for that in a complete binary tree. This leaves inconvenience for us to evaluate 

and analyze the computing target by means of mathematics because computer searching is a post-

known approach. That is, one cannot know of the computing result unless the search is done. 

Hence the computational target cannot be evaluated before a search. On the contrary, an analytic 

formula for a computation can provide a pre-known effect: an outline or even an exact range of 

the computational target can be possibly known by the formula.   

It is just from this point of view that I present mathematically properties and analytic conditions 

for analyzing LCAs in bibliography [15] and I present in this paper further and more exact 

analytics formulas for concrete computations of LCAs and paths in a complete binary tree.  

This paper is composed in 4 parts. The first part is this introduction, the second part contains the 

required preliminaries, the third part includes main results and their proofs, which involve in 

several theorems and propositions that illustrate detail mathematical relations related to LCAs and 

paths in a complete binary tree, and the last part is a conclusion of the whole paper. 
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2. PRELIMINARIES 

We first need to introduce some notations and some lemmas. 

2.1 Definitions and Symbols 

Definitions related with binary trees can be seen by certain entries in books [8] and [9]. In this 

paper, a node of a binary tree refers to either a vertex or a leaf; we assume the depth of the 

complete binary tree we study is h and all the nodes we investigate are valid. An h-leveled full 

binary tree is a complete binary tree that has 2 1h nodes. If each node of a binary tree is encoded 

by natural number 1,2,…,n by the way from top to bottom and from left to right, then the code of 

the node is called a natural code (NC), and the tree is said to be  a NC-coded tree.  

We use symbol 
( , )k jN to express the node at the j-th position on the k-th level (k>0) of a binary 

tree, ( , )

( , )

l j

k iG  to express the lowest common ancestor (LCA) of ( , )k iN and ( , )l jN , and ( )l N to be 

number of the level on which node N lies, for example,
( , )( )k jl N k . Symbol NT is to express the 

subtree with node N being its root. Two nodes 
( , )k iN  and

( , )l jN such that 
( , ) ( , )( ) ( )l j k il N l N are said to 

be co-path if they lie on the same path from the root of the binary tree to ( , )l jN  otherwise they are 

called un-co-path. Symbol x  is to express the floor function defined by 1x x x , where x 

is a real number, and symbol {x} is the decimal function such {x}=x- x . Symbol ( )10 is the 

decimal representation of integer  and ( )2 is ’s binary representation. Symbol ( )z , called z-

function, which is defined in [16] represents the position of the first 0-bit that occurs from the 

least significant bit (lsb) of ’s binary representation, e.g., z(0) = z((00000000)2) = 1; z(1) = 

z((00000001)2) =2; z(83) = z((01010011)2) = 3. Symbols , <<, and >> are respectively 

operations of exclusive OR operation, left shift and right shift. 

2.2 Lemmas 

Lemma1 ([17]). For a NC coded complete binary tree T, node ’s left son and right son are 

respectively 2  and 2 +1; the father of arbitrary node  ( >1) is / 2 ; The k-th (k 1) level of 

T has at most 
12k
nodes; the code of the first node on the k-th level is

12k
. The level where node 

N lies is 2log 1N . There is a unique path connecting two nodes in T. If r is the root of T and  

is a sibling node, then Path(r, )=l( ). 

Lemma2 ([8][9][10][11]). Let A and B be two un-co-path nodes in a complete binary tree, then 

LCA(A,B) is the root of the minimum size subtree which contains A and B and it holds 

( , ) ( , ( , )) ( ( , ), )Path A B Path A LCA A b Path LCA A B B . 

Remark. The statement “LCA(A,B) is the root of the minimum size subtree which contains A and 

B” is seen in bibliography [11]. The formula “Path(A, B)=Path(A,LCA(A,B))+ Path(LCA(A,B),B)” 

is inferred from [8], [9] and [10]. 

Lemma3 ([18][19]). For any real x and integers n: 
1

2
2

x x x ; for any integer n and real 

x: n x n x . For any real x and y, x y yields x y  and x y yields x y . 

Lemma4 ([19]). Total valid bits of positive integer ’s binary representation is 2log 1 .  

Lemma5 ([20]). The radix complement of an n digit number y in radix b is nb y , and its 

diminished radix complement is 1nb y .  

Lemma6([15]). Let ( , )kN and ( , )kN 1(1 ,2 2 )k kk h  be two nodes on the k-th level of a 

complete binary tree; if I is the smallest positive integer that fits the equation 
2 2i i

of 

integer unknown i and 
2I

, then ( , )k IN is the LCA of ( , )kN and ( , )kN . 
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Lemma7([15]). Let
( , )k iN and 

( , )l jN 1 1(1 ,2 2 ,2 2 )k k l lk l h i j  be two nodes in a 

complete binary tree; then the two share a common direct ancestor (or on the same path) if and 

only if there exists a positive integer  such that 
2

j
i  and k l , and then ( , )k iN  is the LCA 

of ( , )k iN and ( , )l jN . 

Lemma8 ([15]). Let ( , )mN and
( , )nN 1 1(1 ,2 2 ,2 2 )m m n nm n h  be two nodes in a 

complete binary tree; then ( , )

( , )

m

mG  = ( , )

( , )

n

mG , where 
2n m

. 

Lemma9 ([15]). Let ( , )kN and ( , )kN 1(1 ,2 2 )k kk h  be two nodes on the k-th level of a 

complete binary tree, and ,  respectively satisfy 
( )2z

, 

( ) ( )1 1
( ) 2 ( ) 2

2 2

z z  

then ( , )kN  and ( , )kN  share their LCA with ( ( ), )k zN  and ( ( ), )k zN , namely, ( , ) ( ( ), )

( , ) ( ( ), )

k k z

k k zG G . 

3. MAIN RESULTS AND PROOFS 

Main results of this paper include two parts: the first part is some theorems and propositions to 

describe distribution of nodes and their LCAs in a complete binary tree and the second part is 

several theorems that describe a path connecting two nodes. 

3.1. Theorems of Nodes and LCAs 

Theorem1. A full binary tree is a geometrically symmetric in a way that on the k-th level (1 k ), 

two nodes ( , ) ( , ),k i k jN N that satisfy 12 2 1k ki j  and i j  locate at symmetric positions, 

namely, the distance of ( , )k iN from the leftmost node is equal to the distance of ( , )k jN  from the 

rightmost node, or vice versa. 

Proof. By Lemma 1, 1( ,2 )kk
N  is the leftmost node and 

( ,2 1)kk
N is the rightmost node on the k-th 

level. Let 12 , 2 1k ki j where 10 , 2k are integers; then 12 2 1k ki j  
13 2 1k  . Since by the given condition 12 2 1k ki j , it  yields 13 2 1k  

12 2 1 0k k , namely, = . That means that the distance from ( , )k iN to the 

leftmost node is equal to the distance from ( , )k jN  to the rightmost node. Thus the lemma holds.  

Theorem2. The fathers of two symmetric nodes ( , )kN and ( , )kN 1( 1,2 , 2 )k kk  that lie on 

the k-th level of a complete binary tree are also respectively symmetric on the (k-1)-th level of the 

tree. Furthermore, let T be a complete binary tree; then the LCAs of T’s nodes that lie at 

symmetric positions are also symmetric. 

Proof. We first prove the first conclusion since the second conclusion is just a proposition of the 

first one. Without loss of generality, we assume that 12k  and 2 1k , where is an 

integer such that 10 2k . By Lemma 1, fathers of ( , )kN , ( , )kN are respectively
( 1, /2 )k

N  and 

( 1, /2 )k
N . Then we need to prove that 

( 1, /2 )k
N  and 

( 1, /2 )k
N are symmetric. By Theorem 1, this 

only requires to prove that 1 22 2 1
2 2

k k . In fact, we have (by Lemma 3) 

1 1 1
2

1 1 1
2 2

1 2

2 2 1 2 2 1
2 1

2 2 2 2 2 2 2

2 2 1 2
2 1 2 2 1

2 2 2 2

2 2 1

k k k k
k

k k k
k k

k k

 

Hence Theorem 2 holds.  
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Theorem3. Let T be an h-leveled and NC-coded full binary tree and 
( , )mN  ( 1m , 

12 2 )m m be the root of subtree 
( , )mNT ; suppose ’s binary representation is 

1 2 1 2( ... )m m
, then the binary representations of the 12k nodes on the k-th level of 

( , )mNT are 

    2 1 2 2 1 2 2 1 2 2 1 2 2 1 2

1 2 2

( ... 0...0) ,( ... 0...01) ,( ... 0...010) ,( ... 0...011) ,..., ( ... 1...1)m m m m m

k k k k k

 

Where the positions of the 0s and the 1s subordinate to the following binomial array as figure 1 

depicts. 

 

Figure1. Binomial array of positions of the 0s and the 1s 

 Proof. By Lemma 1, ( , )mN ’s left son and right son are respectively 2 and 2 1. Since 2 ’s 

binary representation is a left shift of ’s, namely, 2 1, hence 
10 1 2 1 2(2 ) ( ... 0)m m

 

and 
10 1 2 1 2(2 1) ( ... 1)m m

. Likewise, the others nodes are obtained in a recursive procedure.  

Proposition1. Let T be an h-leveled and NC coded full binary tree and ( , )mN  ( 1m , 

12 2 )m m be the root of subtree 
( , )mNT ; then the 12k nodes on the k-th level of 

( , )mNT are 

12 ,2 1,...,2 ,...,2 2 1k k k k kj . 

Proposition2. Two nodes in a complete binary tree share a common ancestor if and only if they 

have common bits in their binary representations from the most significant bit (msb). The more 

common bits they have, the lower level their common ancestors lie.  

Proof. We first consider two arbitrary nodes on the same level of the tree. Let ( , )kN and ( , )kN  

1(1 ,2 2 )k kk h  be two nodes on the k-th level of a complete binary tree; then Lemma 

6 shows that the smallest positive integer I such that fits the equation 
2 2i i

of integer 

unknown i and 
2I

 determine the node ( , )k IN  to be the LCA of ( , )kN and ( , )kN . Let the 

binary representations of  and  are respectively 
1 2 1 2( ... )k k

 and 
1 2 1 2( ... )k k

; 

then by meaning of right shift of bitwise operation it yields  1 1 2(0...0 ... )
2

k k ii
i

i , 

 1 1 2(0...0 ... )
2

k k ii
i

i . Hence the equation 
2 2i i

says  and  must have 

common bits in their binary representations from the msb. On the other hand, it is obvious that the 

number i plays two roles in the equation 
2 2i i

:one is to count the times of right shift 

operation, and the other is to record the number that ( , )kN and ( , )kN trace their LCA. Therefore, 

the smaller the number i is, the more common bits  and  have and the faster ( , )kN and ( , )kN  

find their LCA.   

Next by Lemma 7 and in the same way, we can prove proposition holds in the case that two nodes 

are on different level of the tree. We just omit the details here.  
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Proposition3. Let
( , )mN and

( , )mN 1(1 ,2 2 )m mm n h  be two nodes on the m-th level 

of a complete binary tree; then 
( , ) ( , ) ( , )( , )m m ILCA N N N , where 2( log ( ^ ) 1)I m  and 

I . 

Proof. From the analytic process of proving Proposition 2 and by Theorem 3, it knows that the 

LCA of ( , )mN and ( , )mN is actually determined by the maximal common bits that  and  have in 

their binary representations from the msb. Hence it is necessary to find out the number of the 

maximal common bits. Without loss of generality, we suppose that  and  have x common bits 

and write them by 
1 2 2 1 2( ... ... )x m xc c c  and 

1 2 2 1 2( ... ... )x m xc c c , where (1 )ic i x  is the 

common bit. Then by definition of exclusive OR operation, it yields  2 1 2(0...0 ... )m x

x

, 

where ^i i i (1 )i m x  is 0 or 1. This and Lemma 4 lead to 2( log ( ) 1)x m . 

Since 
1 2 2( ... ) ( )xc c c m x , it holds 

( , ) ( , ) ( , )( , )m m ILCA N N N , as the proposition claims.  

Proposition4.  Let ( , )mN and ( , )nN 1 1(1 ,2 2 ,2 2 )m m n nm n h  be two nodes in a 

complete binary tree; then 
( , ) ( , ) ( , )( , )m n ILCA N N N , where 2( log ( ^ ( ( ))) 1)I m n m  

and I . 

Proof. By Lemma 1, it yields 2log 1m  and 2log 1n .Suppose the binary 

representations of  and  are respectively 
1 2 1 2( ... )m m

and
1 2 1 2( ... )n n

. Let 

n m  and 
2

; then ( )n m  1 1 2( ... )n n n

m

  and ( , )nN is on the m-th level. 

By proposition 3, ( , ) ( , ) ( , )( , )m m ILCA N N N , where 2( log ( ^ ) 1)I m  and I . 

Since by Lemma 8, ( , )

( , )

m

mG  = ( , )

( , )

n

mG , it yields ( , ) ( , ) ( , )( , )m m ILCA N N N .  

Theorem4. Two different nodes ( , )kN , ( , )kN (k >1) on the k-th level of a complete binary tree fit 
1^ 2 1k . 

Proof. By Theorem 3, an arbitrary node 1

( , ) (1 ,2 2 )k k

k jN k h j that lies on the k-th level 

implies that 12kj where is an integer such that 0 <2
k-1

, hence j’s binary representation is 

1 2 1 2

1

(0...01 )k

k

j n n n
 , where (1 1)in i k  is 0 or 1. Therefore, without loss of generality, we 

assume 1 2 1 2

1

(0...01 ... )k

k

  and 1 2 1 2

1

(0...01 ... )k

k

 , where , (1 1)i i i k  is 0 or 1. Then it 

leads to 1 2 1 2

1

^ (0..00 )k

k


 where ^ (1 1)i i i i k  is 0 or 1. Hence 


1

2

1

^ (0...001 11) 2 1k

k

 . 

Theorem5. Let ( , )kN and ( , )kN 1( 1,2 , 2 )k kk  be two nodes in a complete binary tree; 

suppose 1 1 22 2 2k k k  and 1 22 2 2k k k , then 2^ 2k . 

Proof. Without loss of generality, we assume that 12k , 1 22 2k k , where 
20 , 2k ; then the binary representations of and are respectively 

3 2 1 2

3

(0...0 ... )k

k

 , 3 2 1 2

3

(0...0 ... )k

k

 . Consequently, it yields 2 2 1 2

3

(0...010 ... )k

k

 , 

2 2 1 2

3

(0...011 ... )k

k

  and 1 2 1 2

3

^ (0..01 )k

k


 , where ^ (1 3)i i i i k  is 0 or 1. 

Obviously, 2 2

1 2 1 2

3

^ (0..01 ) 2 2k k

k

k


  

Proposition5. Let ( , )kN and ( , )kN ( 1)k  be two symmetric nodes on the k-th level of a complete 

binary tree, then 12 1k . 
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Proof. Without loss of generality, we assume that 12k , 2 1k , 10 2k  and ’s 

binary representation is 1 2 1 2

1

(0 ... )k

k


, where (1 1)i i k ; then ’s binary representation is 

1 2 1 2

1

(0...01 ... )k

k


. Considering 1 12 1 2 2 1k k k , by Lemma 5, the part 

12 1k  is the one’s complement of ; hence 
1 2 1 2(0...01 ... )k

, where (1 1)i i k is the 

one’s complement of 
i

Consequently, it yields 1 2 1 2 1 2 1 2

1 1

(0...01 ... ) (0...01 ... )k k

k k

  = 


1

2

1

(0...001...11) 2 1k

k

. 

3.2. Theorems of Path-computation 

Theorem6. Let
( , )mN and

( , )nN 1 1(1 ,2 2 ,2 2 )m m n nm n h  be two co-pathed nodes in 

a complete binary tree, then
( , ) ( , ) ( , ) ( , )( , ) ( ) ( )m n n mPath N N l N l N n m . 

Proof. (omitted). 

Theorem7. Let ( , )kN and ( , )kN  be two nodes on the k-th level of a complete binary tree, then 

( , ) ( , ) 2( ( , )) ( log ( ^ ) 1)k kl LCA N N k , and hence 

( , ) ( , ) ( , ) ( , ) ( , ) ( , )( , ( , )) ( , ( , ))k k k k k kPath N LCA N N Path N LCA N N 2log ( ) 1 , 

and 

( , ) ( , ) 2( , ) 2( log ( ) 1)k kPath N N . 

Proof. The first formula is shown in proposition 3. The second one is drawn from the first one 

and Lemma 2. 

Proposition6. Let ( , )kN and ( , )kN 1(1 ,2 2 )k kk h  be two nodes on the k-th level of a 

complete binary tree; then ( , ) ( , )2 ( ) ( , ) 2( 1)k kz Path N N k . 

Proof. First, by Lemma 2 and Lemma 9, it knows that,  

( , ) ( , ) ( , ) ( , ) ( , )( , ) 2 ( , ( , )) 2 ( )k k k k kPath N N Path N LCA N N z . 

Then by Theorem 7, it yields  

( , ) ( , ) 2( , ) 2( log ( ) 1)k kPath N N .  

Now the Proposition 5 says 1^ 2 1k , which means ^  must be identical to a node on the 

-th level such that 1  (k-1). By Lemma 1, it yields 

2log ( ^ ) 2k . Hence ( , ) ( , ) 2( , ) 2( log ( ) 1) 2( 1)k kPath N N k  

Proposition7. Let ( , )kN and ( , )kN 1( 1,2 , 2 )k kk  be two nodes in a complete binary tree; 

suppose 12k  12k  22k  and 1 22 2 2k k k ; then ( , ) ( , )( , ) 2( 1)k kPath N N k . 

Proof. First we know, by Theorem 4, that 1^ 2 1k  holds for arbitrary ( , )kN and ( , )kN . And 

we also know, by Theorem 5, that 2^ 2k . That is to say, ^  must be identical to a node on 

the (k-1)-th level of the tree. Since , by Lemma 1, it yields 2log ( ^ ) 2k . This 

immediately leads to ( , ) ( , )( , ) 2( 1)k kPath N N k . 

Theorem8. Let ( , )mN and ( , )nN 1 1(1 ,2 2 ,2 2 )m m n nm n h  be two arbitrary un-co-

pathed nodes in a complete binary tree; then 

( , ) ( , ) 2( , ) 2( log ( ^ ( ( ))) 1)m nPath N N n m n m . 

Proof. (Omitted). 
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4. CONCLUSION  

The proved 8 theorems together with their 7 propositions form a complete system to calculate and 

estimate the LCAs and the paths in a complete binary tree. Theorem 1 and 2 establish the 

symmetric characteristics of a complete binary tree; theorem 3 presents the intrinsic relation 

between nodes’ binary representations and their LCAs, showing that the LCA of two nodes is 

intrinsic and invariant in a complete binary tree; theorems 4 and 5 point out the distributive range 

of two nodes’ LCA, laying a way to estimate a path connecting two nodes. Theorems 6,7 and 8 

provide an approach to evaluate by means of mathematic deduction a path connecting two nodes 

in a complete binary tree. With these theorems and propositions, one can exactly calculate the 

LCAs and paths in a complete binary tree. Since a complete binary tree is an important content of 

discrete mathematics and graph theory, the study of this article can be a reference to discrete 

mathematics and graph theory. 

In the end, it is worth to point out that, the most valuable contribution of this paper and 

bibliography [15] is that, I try to form an idea of rational algorithm design: design of algorithms 

based on mathematical deductions, not by some observational results like that in many books 

such as in [1], [21]-[23]. As a professor of engineering, I know very well that students of 

engineering always make such a mistake that they take their observations as a fundamental 

principle (or axiom) to set up the frame of their studies. Therefore, I prove each theorem and each 

proposition through strict mathematical deductions so as to set up a sample for students of 

engineering.  
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