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Abstract: Wavy falling films have been identified as an important aspect of absorption refrigeration 

systems. Much mass and heat transfer rates have been observed in such films. In this paper the energy 

equation for a laminar wavy film flowing over a vertical isothermal plate was solved numerically by the 

finite difference method making advantage of a previously available result for the hydrodynamic model 

from the same authors for Reynolds Numbers from 25 to 500. The results show that waves enhance the heat 

transfer by as much as 30% compared to the smooth film. This is due to the normal convective flux 

resulting from the transverse velocity component. The results for film heat heating is the same as for film 

cooling. This model is successful in predicting the periodic- and intermediate-wave regime characteristics. 
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1. INTRODUCTION 

Thin films flowing down vertical surfaces have been extensively studied because of their common 

occurrence in a variety of engineering applications. The transport properties typical of thin-film 

flows are especially suited to applications in industrial process equipment. Recently the 

absorption heat pumps and chillers have received considerable attention due to their low 

electricity consumption. The efficient heat- and mass-transfer characteristics of the film are 

primarily the result of the thinness of the film and are further enhanced by the presence of waves 

on the liquid-vapor interface. Gravity is the driving force which creates the film flow. The 

theoretical and numerical description of falling liquid films is still a real  challenge. Existing 

models are either limited in their generality or need enormous computational resources. 

Wavy motion in a falling liquid film has been investigated experimentally (Emmert and Pigford, 

[1]; Oliver and Atherinos, [2]; Yih and Seagrave, [3] and numerically by Yang, [4]; Patnaik and 

Blanco, [5];  Hantsch and Gross [6] and by a hybrid analytical-numerical method by Habib, [7].  

Theoretical studies on the combined heat and mass transfer on smooth (waveless) film absorption 

have been reported by (Rotem and Neilson, [8]; Berhente and Ruckenstein, [9]; Shair, [10]; 

Nakoryakov et al., [11]; Anderberg and Vliet, [12]; Goff and Ramadance, [13]; Yang and Wood, 

[14]; Habib and wood, [15]. More recently experimental studies in heat transfer in two-

dimensional falling film with uniform heat flux were performed by Haustein, [16]. All indicated 

that the film waves have a strong effect on the transfer rates. Theoretical studies of heat and mass 

transfer in a wavy film are rare in the literature. The difficulties are due to the coupled 

momentum, heat and mass transfer under conditions of the wavy motion. Yang et al. [17]; Patnaik 

[18].  Islama et al., [19] studied the heat and mass transfer in a wavy film absorption process. 
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Hirshburg and Florshuetz, [20] developed a wavy-film heat transfer model that included 

condensation. Faghri et al., [21] solved the energy equation assuming a simple sine wave profile. 

It is worth noting that Nusselt, [22] was the first to analyze laminar film condensation on an 

isothermal inclined surface by predicting the liquid film resistance. The objective of this work is 

to introduce a better heat transfer model using a more realistic wave profile developed previously 

by Habib et al., [7].  

2. ANALYSIS 

To develop the mathematical model, consider a thin laminar wavy film flowing over a vertical 

isothermal plate as shown in Fig. 1. The following assumptions were used. 

(1) The liquid properties are constant. 

(2) Diffusion is neglected in the flow direction. 

(3) Specified temperature at the wall and at the bulk of the surrounding vapor. 

 Under these assumptions the energy equation can be written as 
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Fig1. Coordinate System for the Wavy Film 

To solve the energy equation, a hydrodynamic solution is required a priori. Faghri [21] gives the 

following velocity profiles          
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Where c is the wave speed and ( , )oV x  t  is the cross-sectional mean velocity defined as 
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And   and  respectively are the local film thickness and the dimensionless surface deflection as 

expressed by Habib [7] are 
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Some of the wave profiles are shown in Fig. 2, Habib [7] 

 

Fig2. The wave profile for water (Reynolds number, Re = 25), (From Habib [7]). 

The main difficulty in seeking solution for Eq. [1] is that, in physical space at y  , i. e., the 

boundary of computational domain is changing with space and time. To overcome this moving 

boundary difficulty, recall that the definition / ( , )y x t   converts the domain ( , , )x y t  with 

ripple interface, to a domain ( , , )x t  with flat interface at the free surface, 1 . 

Substituting / ( , )y x t  into Eq. [2] and [3] respectively gives.   
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For closure, Eq. [1] requires an initial condition. To do this, recall that for periodic wave states, 

there exists a permanent wave transformation variable x ct   which reduces Eq. [1] to  
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In the evaporation problem of water, o , the average film thickness over the wavelength will not 

vary substantially with distance .x  The boundary conditions are 

Specified temperature at the wall              ( ,0) 1T    

Specified temperature at the free surface  ( ,0) 0T    

Periodic boundary conditions in the streamwise direction (0, ) (2 , )T T    

The transformed energy equation [9] is discretized by a finite difference method. The mesh size 

used is (60 60) with equal spacing in both directions.  Convergence of the solution was 

achieved when the maximum absolute value did not exceed prescribed limit of 
810 .

  

3. RESULTS AND DISCUSSIONS 

Figure 3-a shows the isotherms for smooth film (waveless) compared to the isotherms in wavy 

film (Fig 3-b) for film Reynold    number equals 50. 

                                                                

Fig3-a. Isotherms for Waveless case, Re=50             Fig3-b. Isotherms for Wavy case, Re=50 

Fig3. Isotherms for smooth and wavy film for Re=50 

As observed from Fig. 3-b the waves enhance the heat transfer as they penetrate the film. The 

normal convective flux resulting from the transverse velocity component is responsible for this 

enhancement. More isotherms are shown in Fig. 4 for Reynolds numbers form 25 to 500. 
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Re=25 

 
Re=50 

 
Re=100 

 
Re=200 

 
Re=300 

 
Re=500 

Fig4. Isotherms at different Reynolds numbers 

To study the effect of film heating and cooling, two representative cases were studied for water at 

Reynold    number = 25. In the first case the wall temperature was kept at a normalized isothermal 

temperature of 1 while the free surface was kept at a normalized temperature of 0. In the second 

case the situation was reversed, the free surface was kept at a normalized isothermal temperature 

of 1 while the wall temperature was kept at 0.  Figure 5-a and Fig. 5-b show the temperature 

contour levels within the film for the first and second case, respectively. 

                                      

Fig5-a. Isotherms for the Wavy Film for the           Fig5-b. Isotherms for the Wavy Film for  

first case, Re=25                                              the second case, Re=25 
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Fig5. Isotherms for the Wavy Film for film heating and film cooling 

The local rate of heat transfer can be determined by knowledge of the temperature difference 

between the bulk vapor and the isothermal wall and the thermal resistance between theses points. 

The magnitudes of local heat flux at the wall and at the free surface are calculated respectively 

from 
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Figure 6-a, b show a comparison of the local Nusselt number along the wall and the free surface 

respectively compared to the local Nusselt Number for a waveless or smooth film at Re=25 for 

the first case. 

 

Fig6-a. Comparison of the Local Nusselt Number at the wall for the Wavy Film for the first case for Re=25. 

 
Fig6-b. Comparison of the Local Nusselt Number at the free surface for the Wavy Film for the first case for 

Re=25. 
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Figure 7-a, b show a comparison of the local Nusselt number along the wall and the free surface 

respectively compared to the local Nusselt Number for a waveless or smooth film at Re=25 for 

the second case. 

 

Fig -a. Comparison of the Local Nusselt Number at the wall for the Wavy Film for the second case for 

Re=25. 

 
Fig7-b. Comparison of the Local Nusselt Number at the free surface for the Wavy Film for the second case 

for Re=25. 

It is worth noting that the results for the local Nusselt numbers for the wall and the free surface 

for the first case are similar to the results for the free surface and the wall in the second case. The 

difference is the direction of heat transfer and, subsequently the direction of the net flux of the 

molecules at the liquid-vapor interface. 

To calculate the average Nusselt number, as the wave passes a particular location on the flow 

surface, the local heat transfer rate will vary according to the local film thickness. The time 

average value of this local heat transfer rate is equal to the average heat transfer rate over a 

wavelength of the film. For small amplitude and large wavelengths the average flux for the 

surface 1  is calculated from 
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And for the wall it is 
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Consider the characteristics of an idealized film at a particular location on the flow surface by 

assuming the dominance of cross-film conduction. The ratio of the local Nusselt number 

considering wave effects to that of the Nusselt smooth-film theory is simply 
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The local film thickness is given by Eq. 5 consequently, the integration in (15) was performed 

numerically.  

Figure 8 shows a comparison of the Nusselt for wavy film with Nusselt smooth film at different 

values of Reynold number. The results show that waves enhance the heat transfer by as much as 

30% compared to the smooth film. The periodic solution essentially yields the smooth-film result 

just below a Reynolds number of 20. From the previous discussions, it is apparent that the heat 

transfer model incorporating the results of the hydrodynamic model is quite successful in 

predicting local results. However, the application of this heat transfer model must be restricted to 

situations in which the hydrodynamic model satisfactorily predicts the hydrodynamic 

characteristics of the film. This model is successful in predicting the periodic- and intermediate-

wave regime characteristics. As the Reynolds number is increased, the periodic wave region 

shortens until, at high Reynolds numbers, it is virtually nonexistent. The smooth-film entry length 

increases with larger Reynolds numbers. It is expected that the model predictions will not be 

successful for higher Reynolds numbers because of the influence of wave speed and profile. 

 

Fig8. Comparison of the Nusselt numbers for wavy film with Nusselt smooth film, (Nusselt, [22]), at 

different values of Reynold number. 

4. CONCLUSION 

In this paper a theoretical model for heat transfer is investigated for Reynolds Numbers from 25 to 

500. The results show that waves enhance the heat transfer by as much as 30% compared to the 

smooth film. This is due to the normal convective flux resulting from the transverse velocity. The 

results for film heating is the same as for film cooling. The difference is in the direction of heat 
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flux only. This model is successful in predicting the periodic- and intermediate-wave regime 

characteristics.  The application of this heat transfer model must be restricted to situations in 

which the hydrodynamic model satisfactorily predicts the hydrodynamic characteristics of the 

film. The numerical algorithm developed for the model accelerated the solution. In conclusion the 

theoretical and numerical description of falling liquid will remain a real challenge 
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Nomenclature 

c = wave speed (m/s) 

Nu = Film Nusselt Number 

Re = Reynolds number = 4 /o   

t  = time(s) 

T  = Temperature, C  

u = x -direction velocity (m/s) 

  = y -direction velocity (m/s) 

oV  = x -direction mean velocity over film thickness  

x  = coordinate parallel to the wall 

y  = coordinate normal to the wall 

  = thermal diffusivity 

  = local film thickness (m) 

o  = mean film thickness over a wavelength (m) 

  = / ( , )y x t  

  = wavelength (m) 

  = kinematic viscosity (m
2
/s)  

  = ( ) /x ct   

  = dimensionless free surface deflection 
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