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Abstract: The paper presents and proves several theorems that disclose kinds of relations between a 

lowest-common-ancestor (LCA) and its descendant nodes in a complete binary tree. The proved theorems 

involve in determination of the LCA of two nodes on the same level, the LCA of two nodes on the same path, 

the LCA of three nodes on the same level and the LCA of arbitrary two nodes in a complete binary tree. 

Through strict mathematical deductions, conditions in analytic formulas and equations are given for 

computation of the LCAs.  
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1. INTRODUCTION 

Problem of finding the lowest common ancestor (LCA) of two nodes in a tree was first raised in 

1973 by Alfred Aho, John Hopcroft, and Jeffrey Ullman. As a common fundamental problem in 

both graph theorem and computer science, the problem has been widely focused as described in 

bibliographies [1]-[3]. People have designed several algorithms to solve the problem, as 

introduced in bibliographies [4]-[6]. Seeking the LCA of two or more nodes in a complete binary 

tree, as a special case of the previous problem, has recently paid attentions in bioinfomatics and 

industrial applications in pattern matching [7]-[9], rapid location of industrial data flow [10]-[12] 

and development of system on chip (SoC) [13]-[15].  

Look trough present bibliographies of computing an LCA, e.g., the bibliographies [4]-[6], one can 

see that most bibliographies only pay their attention to finding an LCA of two or more nodes, and 

few concern the LCAs’ properties related to their descendant nodes. Actually, there has not been a 

bibliography that mathematically presents a complete descripts about an LCA’s property. This 

leaves a bug for us to analyze LCAs, especially the LCAs from three or more nodes.   

In designing new and fast algorithms for traversal of a binary tree, as illustrated in papers [13], 

[14] and [15], I find it necessary to know clearly the relations between an LCA and its descendant 

nodes. Thus I have made a systematic study on the issue. This paper presents my research results. 

Through strict mathematical deductions, I have proved several theorems that disclose kinds of 

relations between an LCA and its descendant nodes in a complete binary tree. Section 3 will show 

the theorems and their proofs. 

2. PRELIMINARIES 

We need the following lemmas and notations for later sections. 

2.1 Definitions and Symbols 

Definitions related with binary trees can be seen by certain entries in book [16]. In this paper, we 

assume the depth of the complete binary tree we study is h and all the nodes we investigate are 

valid. 

We use symbol ( , )k jN to express the node at the j-th position on the k-th level (k>0) of a binary 

tree, ( , )

( , )

l j

k iG  to express the LCA of ( , )k iN and ( , )l jN , and ( )l N to be number of the level on which the 
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node N lies, for example,
( , )( )k jl N k . Symbol x  is to express the floor function defined by 

1x x x , where x is a real number. 

2.2 Lemmas 

Lemma1 ([16]). If each node of a complete binary tree that has n nodes is encoded by natural 

number 1,2, n by the way from top to bottom and from left to right, then the father node of node j 

(j>1) is / 2j ; The k-th (k 1) level of a complete binary tree has at most 
12k
nodes; the code of 

the first node on the k-th level is
12k
. 

Lemma2 ([17]). For any real x and integers n: n x nx ; for any integer n and real x: 

n x n x . 

Lemma3 ([18]). Let  and  be real number such that 0  and   0 and  be integers such that 

,..., 3, 2, 1,0,1,2,3,..., ; suppose that I is the smallest positive integer that fit the inequality 

10 mod2 2x x of unknown x, then when 
1 1

( ) 2 ( ) 2
2 2

I I it holds 

2 2I I
 

Lemma4 ([19]). For any real x and y, x y yields x y  and x y yields x y .  

Lemma5. Suppose that a, b are positive real numbers such that a b ; if integers x, y fit the 

equality 
2 2x y

a b
, then x y . 

Proof. We adapt a proof by contradiction. Assume x y ; then 1x y , which leads to 

2 2

2 2 2x y y

a a b
. By Lemma 2 and Lemma 4, it yields 2 2 2

2 2 2 2x y y y

a b b a
, which leads to 

a contradiction that 1 2 . Hence x y .  

3. MAIN RESULTS AND PROOFS 

We obtain theorems and propositions that includes the following aspects: 

(1) LCA of two nodes on the same level; 

(2) LCA of two nodes on the same path; 

(3) LCA of three nodes on the same level; 

(4) LCA of arbitrary two nodes in a complete binary tree. 

Proposition1. The direct ancestors of ( , )kN  are ( , ( ))k i iN , where ( ) ( 0)
2i

i i . 

Proof. By Lemma 1, 
( 1, /2 )k

N  is the fathers of ( , )kN , and so forth, the direct ancestors of ( , )kN  

are 
( , /2 )ik i

N . 

Theorem1. Let ( , )kN and ( , )kN 1(1 ,2 2 )k kk h  be two nodes on the k-th level of a 

complete binary tree; if I is the smallest positive integer that fits the equation 
2 2i i

of 

integer unknown i and 
2I

, then ( , )k IN is the LCA of ( , )kN and ( , )kN . 

Proof. By Proposition 1, the direct ancestors of ( , )kN  and ( , )kN are respectively 
( , /2 )ik i

N  

and
( , /2 )ik i

N  when 0i . Therefore ( , )k iN  which satisfies 
2 2i i

is a direct ancestor of 
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( , )kN and
( , )kN . Hence when min( )I i and

2 2I I
, 

( , )k IN is the LCA of 

( , )kN and ( , )kN . 

Theorem 2. Let
( , )kN and

( , )kN 1(1 ,2 2 )k kk h  be two nodes on the k-th level of a 

complete binary tree; if I is the smallest positive integer solution that fits the inequality 
10 mod 2 2i i

 of unknown i, and ,  respectively satisfy
2I

, 

1 1
( ) 2 ( ) 2

2 2

I I  

Then 
( , )kN  and

( , )kN  share their LCA with 
( , )k IN  and

( , )k IN , namely, 
( , ) ( , )

( , ) ( , )

k k I

k k IG G
 

Proof. Substituting  by -  in Lemma 3 immediately yields 

2 2I I
 

By Proposition 1, ( , )k IN  is a direct ancestor of ( , )kN  and ( , )k IN  is a direct ancestor of ( , )kN ; 

hence, the LCA of ( , )k IN and ( , )k IN must be the LCA of ( , )kN and ( , )kN . 

Theorem 2 immediately induces the following proposition 2, which is shown in paper [20], 

propositions 3 and 4. 

Proposition2. If I is the smallest positive integer solution of the inequality 10 mod2 2i i  of 

unknown i and 
2I

j
, then ( , )k IN is the LCA of ( , )k jN and ( , 1)k jN . 

Proof. Taking j  and 1  in Theorem 2 immediate yields 0 .  

Proposition3. Let ( , )kN and ( , )kN 1(1 ,2 2 )k kk h  be two nodes on the k-th level of a 

complete binary tree; then for arbitrary  such that , it holds ( , ) ( , )

( , ) ( , )( ) ( )k k

k kl G l G . 

Proof. Let
1 1  and 

2 1 ; suppose I is the smallest positive integer solution of 

the inequality 10 mod2 2i i of unknown i; then by Lemma 3 it holds  

1

1
2 2I I

 

2

2
2 2I I

 

Where 
1
and 

2
are integers. 

Since , we know
2 1

 and therefore
2 1

.  

Let
2I

j
, then by Proposition 1 we know that the direct ancestors of ( , )kN , ( , )kN and ( , )kN  

are respectively ( , )k IN ,
1( , )k IN and 

2( , )k IN . By Theorem 2 it yields 

1( , )( , )

( , ) ( , )

k Ik

k k IG G
, 

2( , )( , )

( , ) ( , )

k Ik

k k IG G
 

Now let X and Y be respectively the smallest positive integer solutions of the following equations 

of unknown i and j 

1 2,
2 2 2 2i i j j

                     

then by Theorem 1, we know 
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1( , )( , )

( , ) ( , ) ( , /2 ) ( , /2 )X I X

k Ik

k k I k I X k I X
G G N N , 2( , )( , )

( , ) ( , ) ( , /2 ) ( , /2 )Y I Y

k Ik

k k I k I Y k I Y
G G N N  

and 

1 2

2 2X Y
 

By Lemma 5,we know Y X , namely,  

( , ) ( , )

( , ) ( , )( , /2 ) ( , /2 )
( ) ( ) ( ) ( )X I Y

k k

k kk I X k I Y
l G l N l G l N . 

Proposition4. Let
( , )mN and

( , )mN 1(1 ,2 2 )m mk h  be two nodes in a complete binary 

tree, then for arbitrary  such that it holds ( , ) ( , )

( , ) ( , )( ) (m m

m ml G l G . 

Proof. Let , ,I J K be the smallest positive integers that respectively fit the following three 

equations of unknowns , ,i j k  

2 2i i
                                                                                                                                      (1) 

2 2j j
                                                                                                                                     (2) 

2 2k k
                                                                                                                                    (3) 

As Theorem 1 says, ( , )

( , )

m

mG , ( , )

( , )

m

mG  and ( , )

( , )

m

mG  are respectively determined by , ,I J K . We use a proof 

by contradiction to show J K . First by Proposition 3 it yields K I . Now we assume J K ; 

then it derives J I . By this and (1), (2), it leads to 

2 2 2J J J
 

which is contrary to the fact that K is the smallest positive integer that fit (3). Hence J K . Since 
( , )

( , )( )m

ml G m K  and ( , )

( , )( )m

ml G m J , it knows ( , ) ( , )

( , ) ( , )( ) (m m

m ml G l G . 

Theorem3. Let ( , )k iN and ( , )l jN 1 1(1 ,2 2 ,2 2 )k k l lk l h i j  be two nodes in a complete 

binary tree; then the two share a common direct ancestor (or on the same path) if and only if there 

exists a positive integer  such that 

,
2

j
i k l                                                                                                                             (4) 

and then
( 1, /2 )k i

N  is the LCA of ( , )k iN and ( , )l jN . 

Proof. We first prove the first conclusion by its sufficiency and necessity. 

Sufficiency. By the proposition 1, 
( , /2 )l j

N is the 
th

-generation direct ancestor of the ( , )l jN . This 

fact and the condition (4) show that ( , )k iN is a direct ancestor of ( , )l jN , and thus the two nodes share 

a common direct ancestor. Hence the sufficiency holds. 

Necessity. If ( , )k iN and ( , )l jN has the same direct ancestor, then k l leads to that ( , )k iN is an 

ancestor of ( , )l jN . By property of complete binary trees, a sub-tree with root ( , )k iN has at most 2  

nodes on its -th level (or on its maternal tree’s k l -th level). The possible positions of these 

nodes in the maternal tree are  

2 ,2 1,2 2,...,2 2 1i i i i                                                                                                        (5)  

Since ( , )l jN is a descendant of ( , )k iN and k l , we know that j must be one of (5). Considering 

that an arbitrary  such that 10 2  will lead to 
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2

2 2

i
i i (By Lemma 2) 

This implies
2

j
i , which validates the necessity. Hence the first conclusion holds.  

Since 
( , )k iN is an ancestor of 

( , )l jN , its father, 
( 1, /2 )k i

N , is certainly the LCA of 
( , )k iN  and 

( , )l jN . 

Theorem 4. Let
( , )mN and

( , )mN 1(1 ;2 2 )m mm h  be two nodes in a complete binary 

tree; then for arbitrary  such that , it holds 

( , ) ( , ) ( , )

( , ) ( , ) ( , )( ) min( ( ), ( ))m m m

m m ml G l G l G                                                                                                      (6) 

Proof. By definition, ( , )

( , ) )m

mG is a direct ancestor of 
( , )mN  and

( , )mN , and ( , )

( , )

m

mG  is a direct ancestor 

of 
( , )mN  and 

( , )mN ; namely, both ( , )

( , ) )m

mG and ( , )

( , )

m

mG  are direct ancestor of 
( , )mN . Hence the one 

who lies in upper level is a direct ancestor of the other, and obviously is a common ancestor of 

( , )mN ,
( , )mN  and

( , )mN . Consequently, if ( , )

( , )

m

mG  is the LCA of 
( , )mN and

( , )mN , then 

( , ) ( , ) ( , )

( , ) ( , ) ( , )( ) min( ( ), ( ))m m m

m m ml G l G l G                                                                                                       (7) 

By the proposition 3 and 4, it simultaneously holds 

( , ) ( , )

( , ) ( , )( ) ( )m m

m ml G l G , ( , ) ( , )

( , ) ( , )( ) ( )m m

m ml G l G  

So that it yields 

( , ) ( , ) ( , )

( , ) ( , ) ( , )( ) min( ( ), ( ))m m m

m m ml G l G l G . 

Proposition 5.Let ( , )mN and ( , )nN 1 1(1 ,2 2 ,2 2 )m m n nm n h  be two nodes in a 

complete binary tree and ,
2

n m , then ( , )

( , )

m

mG  = ( , )

( , )

n

mG . 

Proof. By Theorem 3, ( , ) ( , )n mN N  is an m-level-laid direct ancestor of ( , )nN ; therefore all the 

direct ancestors of ( , )mN must be direct ancestors of ( , )nN . Hence ( , ) ( , )

( , ) ( , )

m n

m mG G  

4. CONCLUSION  

The proved 4 theorems together with their 5 propositions form a complete system to describe 

relations among LCAs and their descendant nodes in a complete binary tree. Theorem 1 

establishes a general condition to determine the LCA of two nodes, theorem 2 shows the relation 

between the LCA and direct ancestors of two nodes, theorem 3 depicts computation of the LCA 

of two nodes on the same path, propositions 3, 4 and theorem 4 give the relations of two LCAs 

among three nodes, and proposition 5 shows how to determine an LCA of arbitrary two nodes. 

With these theorems and propositions, one can easily know and determine the LCA of two nodes 

in a complete binary tree. Since a complete binary tree is an important content of discrete 

mathematics and graph theory, the study of this article can be a reference to discrete mathematics 

and graph theory.  
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