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Abstract: In this paper we study the optimal control problem for a class of bilinear systems via Shifted 

Legendre Polynomials (SLPs). This method is based on approximating the system state variables and the 

control variable by SLPs series in finite length with unknown parameters. The optimal control problem is 

replaced by a parameter optimization problem, which consists of the minimization or maximization of the 

performance index, subject to algebraic constraints. An example has been considered to clarify the 

proposed method. We analyzed a model for cancer chemotherapy that aims at minimizing the damage done 

to bone marrow cells during the chemotherapy 
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1. INTRODUCTION 

Bilinear systems are a special class of nonlinear systems, in which nonlinear terms are constructed 

by multiplication of control vector and state vector. Through nearly half a century, they have 

received great attention by researchers. The importance of such systems lies in the fact that many 

important processes, not only in engineering [17], but also in biology [24], socio-economics [18], 

and chemistry [3], can be modeled by bilinear systems. An overview of the available control 

strategies for bilinear systems can be found in [6-19]. Also, for more information about modeling 

and control of bilinear systems, we can see the thesis [5] and the references therein. Besides, 

optimal control is one of the most active subjects in the control theory. 

An optimal control problem consists of finding a control function  which minimizes a given 

functional cost (performance index) while satisfying the system state equations and constraints. It 

has successful applications in many disciplines, namely, economics, environment, management, 

engineering, etc. As we know, a nonlinear optimal control problem does not have usually an 

analytical solution contrary to the linear case, and this reason motivates many researchers to try to 

find a numerical solution to this problem. In the literature, several papers address the solution of 

optimal control problems of nonlinear systems via Orthogonal Functions technique(OFs)[10]. We 

find that not much work has been reported on this approach. Lee and Chang [9] appear to be the 

first to study optimal control problems of nonlinear systems using general orthogonal 

polynomials. 

The OFs technique has been developed for solving the problems (identification, analysis and 

control) of continuous time dynamical systems. The basic idea of this technique is that it converts 

calculus (differential or integral) to algebra[10]. i.e, the optimal control problem is replaced by a 

parameter optimization problem which consists of the minimization or maximization of the 

performance index subject to algebraic equations. 

Very recently, applications of OFs technique has been extended to different types of systems, i.e. 

systems described by integrodifferential equations [11], multi-delay systems [16], distributed 
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parameter systems [16], delay systems with reverse time functions [16a] and to singular systems 

[15]. There are three classes of sets of orthogonal functions that are widely used. The first 

includes sets of piecewise constant basis functions (such as the Walsh functions, block pulse 

functions, etc). The second consists of sets of orthogonal polynomials (such as Legendre 

polynomials and Chebyshev polynomials, etc). The third is the widely used sets of sine-cosine 

functions in Fourier series[4-7]. 

In this work we propose a method to solve this optimal control problem for a class of bilinear 

system by converting it directly into a parameter optimization problem using the orthogonal 

functions thecnique (OF)[4]. This method is based on approximating the system state variables by 

Shifted Legendre Polynomials Shilfted Legendre Polynomials (SPLs) series in finite length with 

unknown parameters. 

The paper is organized as follows: The next section briefly deals with SLPs and their properties. 

Section 3 discusses optimal control of a class of bilinear systems via SLPs, and presents a 

recursive algorithm to solve the control problem. An example is considered in Section 4 to 

demonstrate the method. Finally Section 5 concludes the paper. 

2. SHIFTED LEGENDRE POLYNOMIALS AND THEIR PROPERTIES [4-8] 

The well-know Legendre polynomials  are defined on the interval  

and are satisfy the recurrence relation 

                                                       for  (1) 

  with                                                                                                  

 (2) 

The Rodriguez 's formula of Legendre polynomials is 

 (3) 

The Legendre polynomials are a basis for the set of polynomials, appropriate for use on the 

interval . The first few Legendre polynomials are: 

 (4) 

For practical use of Legendre polynomials on the time interval , it is necessary to shift 

the defining domain by the following variable substitution : 

 (5) 

Let  denote the shifted Legendre polynomials  Then, from (1) it can be 

readily show that the shifted Legendre polynomials  are defined by the recurrence 

relationship 

,    for  (6) 

    with   

 (7) 

The elementary properties of SLPs are as follows 

Orthogonality: The shifted Legendre polynomials form a complete set and they are orthogonal 

on the interval  with 
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 (8) 

where  is the Kronecker delta. 

The derivative: The derivative of SLPs is [20] 

 (9) 

    where  if  is odd and  if  is even. 

Function approximation: A function  that is square-integrale on the time interval  can 

be represented in terms of SLPs as 

 
(10) 

where 

 (11) 

is called Legendre spectrum of , and 

 (12) 

is called SLPs vector.  given in Eq (10) is given by 

 (13) 

The multiplication: The product of two SLPs  and can be expressed as 

 (14) 

where 

 (15) 

 

Let , then 

 (16) 

    Notice that 

 

 
(17) 

 The recursive formula for computing  is given as follows: The product of  and with 

 can be approximated by SLPs series as [22] 

 (18) 

 where  are obtained by the recurrence formulas 

 (19) 

Multiplying (18) by then integrating from  to , and finally using the orthogonal property 

(8), we obtain, for  

 (20) 
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3. OPTIMAL CONTROL PROBLEM FOR BILINEAR SYSTEM 

3.1 Problem Statement 

We consider the bilinear continuous system described as follow 

 (21) 

with the initial conditions  

where  and  are  matrices. We assumed that the process starts from  and 

ends at fixed time . 

The optimal control problem that is considered in this paper can be stated as follows: Find the 

optimal control  which minimizes the cost functional 

 (22) 

In other words, we seek the optimal control  such that 

 (23) 

where  is the set of admissible controls defined by 

 (24) 

    Subject to 

 (25) 

with the initial conditions where , , the parameters  

and  are the cost coefficients, they are selected to weigh the relative importance of  and . And 

 and  are the initial and final times. 

Integrating Eq. (21) with respect to t, we get 

 (26) 

This solution is bounded. Indeed, the general form of the solution (21) is 

 (27) 

where  and . 

     

So, , 

 

(28) 

 

 

 

 

 

 

where ,  and . 

Using Gronwall inequality, see [23], we obtain , 
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 (29) 

Then the boundedness of the solution (21). 

The existence of the optimal control can be obtained using a result by Fleming and Rishel in [6] 

(see Corollary 4.1). 

Theorem.1: Consider the control problem with system (21). There exists an optimal control 

 such that 

, (30) 

if the following conditions are met: 

(1) The set of controls and corresponding state variables is nonempty. 

(2) The control set  is convex and closed. 

(3) The right-hand side of the state system is bounded by a linear function in the state and control     

variables. 

(4) The integrand of the objective functional is convex on . 

(5) There exist constants  and  such that the integrand  of the   

objective functional satisfies 

 (31) 

To prove that the set of controls and corresponding state variables is nonempty, we will use a 

simplified version of an existence result in Boyce and DiPrima ([20], Theorem 7.1.1): 

Theorem.2: Let  for  be a system of  differential equations 

with initial conditions  for . If each of the functions  and the 

partial derivatives , , are 

continuous in  space, then there exists a unique solution  that satisfies the initial 

conditions. 

Proof: (Theorem.1) We use Theorem.2 to prove that the set of controls and corresponding state 

variables is nonempty. Let  , where the  

form the right hand side of the system of equations (21). Let , for some constant, and 

since all parameters are constants,  are linear. Thus, they are continuous everywhere. 

Additionally, the partial derivatives , 

 are all constants, and so they are also continuous everywhere. 

Therefore, there exists a unique solution  that satisfies the initial conditions. Therefore, 

the set of controls and corresponding state variables is nonempty, and condition 1 is satisfied. 

The control set is convex and closed by definition. Since the state system is bilinear in , the right 

side of (21) satisfies condition 3, using the boundedness of the solution. The integrand in the 

objective functional (22) is convex on . It rest to show that there exists constants  and 

 such that the integrand  of the objective functional satisfies 

  

The state variables being bounded, let c ,  and  Then it 

follows that  

 Now, we present an approximation for the state variables and the control variable by a finite 

series of SLPs as follows 
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(32) 

(33) 

Where   and  are unknowns. For 

simplicity we have used the same degree of expansion for the state and control, where the choice 

of m depends on the required accuracy. 

3.2 The Performance Index Approximation 

Using the approximations for the state variables and the control variable from Equations (32) and 

(33), we can expressing  and  in terms of SLPs. Then the value of the approximated 

performance index in (22) can be given as follows: 

Theorem 3: The value of the approximated performance index given in (22) is given by 

 (34) 

where  for , and   . 

Proof : The term   can be expanded into 

 

 

(35) 

Now, substituting the expression of  in Equation (22) and using integration property of 

SLPs, The integration of all terms in (35), , when  is zero. Then 

 (36) 

This gives proof of the first part of the theorem. Following the same procedure, integration of the 

second part  can be computed. 

Hence 

 

 

3.3 Approximation of the System Dynamics 

Using the result developed in the previous section, we have 

Theorem 4: The approximation of the System Dynamics given in (21) is given by 

 

 

(37) 

where 
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 (38) 

where  if  is odd and  if  is even. 

And 

 (39) 

 

Proof: To approximate the term  by SLPs series, we use the derivative of SLPs 

 

 

where  if  is odd and  if  is even. 

Hence, for  we have 

 
(40) 

where 

 (41) 

where  if  is odd and  if  is even. 

The term can be expanded as follow 

 (42) 

Using the product propriety of two SLPs, the term  can be expanded as follow 

 (43) 

 

Therefore 

 (44) 

Substituting the expression of , and  in equation (21), we have the 

approximation of the System Dynamics 

                      
 

where 

 

 

where  if  is odd and  if  is even. 
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And 

 

 

The optimal control problem is replaced by a parameter optimization problem. The problem now 

is to find the minimum value of  given by (22), subject to the equality constraints 

 given by (21), i.e., 

 
(45) 

Many mathematical programming techniques can be used to solve this parameter optimization 

problem, such as the Lagrange Multipliers, the penalty function, etc. In this work, we use the 

Lagrange Multipliers method. 

  Let 

 (46) 

for . 

4. NUMERICAL SIMULATION: OPTIMAL CONTROL FOR A MODEL IN CANCER 

CHEMOTHERAPY  

In [21] Panetta lays out a simple model of proliferating and quiescent cell populations, and the 

effects of paclitaxel(the paclitaxel belongs to the group of drugs that fight cancer. It works by 

slowing or stopping the growth of cancer cells in the body) on the proliferating population. For a 

given cell population, there are populations of proliferating  and quiescent  cells. The 

population of proliferating cells increases, the cells transition from one state to the other, some 

portion of each population is lost due to naturally occurring causes, and some proliferating cells 

are killed by paclitaxel. 

 
Figure 1. Cells transitioning between resting and growth states [17]] 

From this model, Panetta derived the following bilinear system [17]: 

 (47) 

with the initial conditions  where ,  and  are  matrices given 

by 

 
 

where all parameters are non negative and defined as follows 
Table 1. Parameter definitions 

Parameter Definition 

 The transition rate from proliferating to quiescent state 

 The transition rate from quiescent to proliferating state 

 The rate at which the proliferating cell population is increasing 

 The quiescent cell loss rate 

 The natural cell decay rate of proliferating cells 

 The rate of death by chemotherapy 

 The proliferating (cell-cycle) cell population 

 The quiescent (resting) cell population 
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, represents the chemotherapy dose strength. It can vary between  (no chemotherapy) and  

(maximal chemotherapy). (Note: Maximal chemotherapy is essentially a sub-lethal dose, or the 

maximum that can be given that will not kill the patient). 

Bone marrow, whose blood cell production is an essential function in the body, has a high 

proliferative fraction [17]. This makes it very susceptible to damage by paclitaxel, which is a 

major concern when it is used in the treatment of cancers. As this model can be used to represent 

bone marrow or cancer cell populations, Panetta used the bone marrow version in attempts to find 

the ideal treatment schedule that destroys the least bone marrow. 

The goal is to minimize the cancer cell population  while also minimizing chemotherapy 

strength. These have competing effects, as the cancer cell population will shrink with increased 

chemotherapy. Recall, however, that chemotherapy is highly cytotoxic, and so using as little as 

possible will result in better overall health for the patient. By minimizing an objective functional 

comprised of the cell population and the chemotherapy dose, we gain insight into the ideal 

treatment schedule and dosing that balances damage to the tumor with chemotherapy strength. 

Mathematically, the problem is to minimize the objective functional 

 
(48) 

where the parameters  and  and  denote the weight on cost. And  represents the 

duration of the chemotherapy program. 

Using the proposed method, our problem can be reformulated as follows 

 Minimize: 

 
(49) 

 Subject to: 

 

 

(50) 

where 

 (52) 

 

    where  if  is odd and  if  is even. 

    And 

 (53) 

This problem can be solved using the Lagrange Multipliers method. The numerical simulations 

are carried out using Matlab and using the initial conditions  and  and the 

parameter values  and . Note that the 

initial conditions and the parameter values are taken from [1]. Also, ,  =80. 

Now, for , we present the graphs for proliferating and quiescent cells with and without 

control, the graph of optimal control and the graph of the performance index. 
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                          Figure 2. The proliferating cells                     Figure 3. The quiescent cells  

                              with and without control                              with and without control 

 

 

 

 

 

 

 

 

 

 
                              Figure 4. The optimal control                    Figure 5. The performance index 

These graphs, allow us to compare changes in the cancer cell population  and  before and after 

the introduction of the control. 

Figure 2 shows the effect of the optimal control in decreasing more rapidly the number of 

proliferating cells during the treatment program. Also, figure 3 shows that before treatment, the 

quiescent cells increase rapidly. While, we notice that after the treatments the number of quiescent 

cells decreases greatly. We show, in figure 5, that the values of the performance index decrease 

greatly during the treatment program. Finally, figure 4 gives a representation of the optimal 

control . 

5. CONCLUSION AND PERSPECTIVES 

An approximate optimal control method has been developed for a class of bilinear system by 

using the shifted Legendre polynomials. The control variable and state variables are approximated 

by SLPs series. Then the system dynamics has transformed into systems of algebraic equations in 

unknown parameters which can conveniently be solved. An example has been considered to 

clarify the proposed method. We analyzed a model for cancer chemotherapy that aims at 

minimizing the damage done to bone marrow cells during the chemotherapy, using the proposed 

method. The perspectives of this work are to find the error estimates of the approximation of the 

control variable and the states variables, and extend the technique for a multi-input bilinear 

system. 
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