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Abstract: The problem of determination necessary and sufficient conditions for a 2-normed space to be 2-
pre-Hilbert space is in the focus of interest of many mathematicians. Some characterizations of 2-inner 

product are stated in [1], [4], [6], [7] and [12]. In this paper we gave a necessary and sufficient condition 

for the existence of 2-inner product in a 2-normed space ( ,|| , ||)L  applying Mercer inequality and also the 

generalizations of Tanaka, Kirk-Smiley and Gurarii-Sozonov results are given.  
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1. INTRODUCTION 

Concepts of 2-norm and 2-inner product are two-dimensional analogies of the concepts of norm 

and inner product, respectively. The studding of 2-normed spaces and their application is simpler 

if 2-norm is generated by 2-inner product. On the other hand, verifying whether 2-norm is 
generated by a 2-inner product is not always simple. Therefore, of particular importance is the 

finding of different equivalent conditions of existence of 2-inner product that generates 2-norm, 

which is of interest in this paper. 

Let L be a real vector space with dimension greater than 1 and || , ||  be a real function of L L  

such that following holds true: 

a) || , || 0x y , for each ,x y L  and || , || 0x y  if and only if the set { , }x y  is linearly 

dependent;  

b) || , || || , ||,x y y x  for each ,x y L ; 

c) || , || | | || , ||,x y x y  for each ,x y L  and for each ;R  

d) || , || || , || || , ||,x y z x z y z  for each , , .x y z L   

The function || , ||  is said to be 2-norm on L, and ( ,|| , ||)L  is said to be vector 2-norm space ([8]). 

The above inequality d) is said to be parallelepiped inequality.  

Let 1n  be a positive integer, L  be a real vector space, dimL n  and ( , | )  be a real function 

of L L L  such that 

i)  ( , | ) 0x x y , for each ,x y L  and ( , | ) 0x x y  if and only if x  and y  are linearly 

dependent;  

ii)  ( , | ) ( , | )x y z y x z , for each , ,x y z L ;  

iii)  ( , | ) ( , | )x x y y y x , for each ,x y L ; 

iv)  ( , | ) ( , | )x y z x y z , for each , , .x y z L  and for each R ; and  

v)  1 1( , | ) ( , | ) ( , | )x x y z x y z x y z , for each 1, , ,x x y z L . 
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Function ( , | )  is said to be 2-inner product, and ( ,( , | ))L  is said to be 2-pre-Hilbert space 

([4]).  

R. Ehret proved that ([7]), if ( ,( , | ))L  is a 2-pre-Hilbert space, then 

1/2|| , || ( , | )x y x x y ,                  (1) 

 for each ,x y L  defines a 2-norm, so, we get vector 2-normed space ( ,|| , ||)L  and thus for each 

, ,x y z L  the following equalities hold true 

2 2|| , || || , ||

4
( , | )

x y z x y z
x y z ,                 (2) 

2 2 2 2|| , || || , || 2(|| , || || , || )x y z x y z x z y z .               (3) 

The equality (3) in fact is an analogy of parallelogram equality and is said to be parallelepiped 

equality. Further, 2-normed space L  is 2-pre-Hilbert if and only if for each , ,x y z L  the 

equality (3) holds true. The following three Lemmas we will present a three elementary 

statements according to the equalities (3) and (4).  

Lemma 1. Let ( ,|| , ||)L , dim 2L  be 2-normed space. If there exists a 2-inner product ( , | )Y , 

for each three-dimensional subspace Y  of L , such that 
2( , | ) || , ||Yy y z y z , for each ,y z Y , 

then exists a 2-inner product ( , | )L  such that 
2( , | ) || , ||Lx x z x z , for each ,x z L .  

Proof. Let , ,x y z L . Then it exists a subspace Y  of L  such that dim 3Y  and , ,x y z Y . The 

assumption implies that it exists 2-inner product ( , | )Y  such that 
2( , | ) || , ||Ya a b a b , for each 

,a b Y . But the last in fact means that the following holds true  

2 2

2 2

|| , || || , || ( , | ) ( , )

2( , | ) 2( , | )

2(|| , || || , || ).

Y Y

Y Y

x y z x y z x y x y z x y x y

x x z y y z

x z y z

 

Finally, the arbitrariness of , ,x y z L  implies that the parallelepiped equality holds in L . It 

means that L  is 2-pre-Hilbert space, i.e. there exists 2-inner product ( , | )L  such that 

2( , | ) || , ||Lx x z x z , for each ,x z L .  

Lemma 2. Let ( , | )  be 2-inner product in vector space L  and let a linear mapping :T L L  be 

injection. Then,  

( , | ) ( ( ), ( ) | ( )), , ,Tx y z T x T y T z x y z L               (4) 

defines 2-inner product in L .  

Proof. Let a linear mapping :T L L  be injection, and ( , | )T  be defined by (4). Then the 

following holds true  

( , | ) ( ( ), ( ) | ( )) 0,Tx x z T x T x T z  for each ,x z L  

and furthermore ( , | ) 0Tx x z  if and only if ( )T x  and ( )T z  are linearly dependent, i.e. there 

exists , R  such that 0  or 0  and ( ) ( ) 0T x T z . The last actually means that 

( ) 0T x z  , and since T  is injection, and (0) 0T  we conclude that 0x z . 

According to that, ( , | ) 0Tx x z  if and only if x  and z  are linearly dependent, i.e. the axiom i) 

of 2-inner product definition holds true.  

Hence, T  is linear mapping, and therefore the properties of 2-inner product imply that for each all 

1, , ,x x y z L  and for each R  the following holds true 

( , | ) ( ( ), ( ) | ( )) ( ( ), ( ) | ( )) ( , | )T Tx y z T x T y T z T y T x T z y x z ,  
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( , | ) ( ( ), ( ) | ( )) ( ( ), ( ) | ( )) ( , | )T Tx x y T x T x T y T y T y T x y y x ,  

( , | ) ( ( ), ( ) | ( )) ( ( ), ( ) | ( ))

( ( ), ( ) | ( )) ( , | ) ,

T

T

x y z T x T y T z T x T y T z

T x T y T z x y z
 

1 1 1

1

1

( , | ) ( ( ), ( ) | ( )) ( ( ) ( ), ( ) | ( ))

( ( ), ( ) | ( )) ( ( ), ( ) | ( ))

( , | ) ( , | ) .

T

T T

x x y z T x x T y T z T x T x T y T z

T x T y T z T x T y T z

x y z x y z

 

This means that the axioms ii)-v) of 2-inner product definition are satisfied.  

Lemma 3. Let L  and 1L  be 2-pre-Hilbert spaces. Then, for the linear mapping 1:F L L  the 

following holds true 

1
( ( ), ( ) | ( )) ( , | )L LF x F y F z x y z , for each , ,x y z L              (5) 

if and only if 

1
|| ( ), ( ) || || , ||L LF x F y x y , for each ,x y L ,               (6) 

and 2-norms on L  and 1L  are defined by the 2-inner products.  

Proof. Let (5) holds for a linear mapping 1:F L L . Then for each ,x y L  is true that  

1 1
|| ( ), ( ) || ( ( ), ( ) | ( )) ( , | ) || , ||L L L LF x F y F x F x F y x x y x y , 

i.e. holds (6).  

Conversely, if 1:F L L  is a linear mapping such that holds true (6), then for each , ,x y z L   

2 2

1 1

1

2 2

1 1

2 2

|| ( ) ( ), ( )|| || ( ) ( ), ( )||

4

|| ( ), ( )|| || ( ), ( )||

4

|| , || || , ||

4

( ( ), ( ) | ( ))

( , | ) ,

L L

L L

L L

F x F y F z F x F y F z

L

F x y F z F x y F z

x y z x y z

L

F x F y F z

x y z

 

i.e. (5) holds true.  

In [6] C. Diminnie and A. White characterized 2-pre-Hilbert space using partial derivatives of 2-

functionals, i.e. proved that if ( ,( , | ))L
 
is a 2-pre-Hilbert space in which the norm is defined by 

(1), then for each , ,x y z L  holds true  

|| , || || , ||

20
( , | ) lim

x ty z x z

tt
x y z . 

Further, the following Theorem holds true.  

Theorem 1 ([4]). Let ( ,|| , ||)L  be a 2-norm space. L  is 2-pre-Hilbert space if and only if for each 

\{0}z L  one of the following conditions holds true:  

1.II  For each ,x y L  such that || , || || , ||x z y z  and for each ,m n R  holds true 

|| , || || , ||mx ny z nx my z . 

2.II  || , || || , ||x y z x y z , ,x y L  implies  

2 2 2|| , || || , || || , ||x y z x z y z  

3.II There is a real number 0, 1  such that  
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|| , || || , ||x z y z , ,x y L  implies || , || || , ||x y z x y z . 

4.II  There is a real number 0, 1  such that  

|| , || || , ||x y z x y z , ,x y L  implies || , || || , ||x y z x y z . 

5.II  || , || || , ||x z y z , ,x y L  implies that for each real number 0  holds true  

1|| , || || , ||x y z x y z . 

6.II For each 1 2 3, ,x x x L  such that 
3

1

0i
i

x  and 1 2|| , || || , ||x z x z  holds true  

1 3 2 3|| , || || , ||x x z x x z . 

7.II For each 1 2 3 4, , ,x x x x L  such that 
4

1

0i
i

x  and 1 2|| , || || , ||x z x z  and 3 4|| , || || , ||x z x z  

holds true  

1 3 2 4|| , || || , ||x x z x x z  and 2 3 1 4|| , || || , ||x x z x x z . 

8.II The value of the expression  

2 2 2 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , ) || , || || , || || , || || , ||F x x x x x x z x x x z x x x z x x x z  

does not depend on 3x . 

9.II For each 1,..., nx x L , 3n  such that 
1

0
n

i
i

x  the following holds true 

2 2

, 1 1

|| , || 2 || , ||
n n

i k i
i k i

x x z n x z .  

2. DUNKL-WILLIAMS INEQUALITY INTO 2-NORM SPACE 

In this section we will generalize the Dunkl-Williams inequality into 2-normed space. Actually, 
this inequality was proven in [2], but in our further consideration we will present its proof, and 

also we will present a proof of the generalization of Mercer inequality ([16]) into 2-normed space. 

Theorem 2. а) (Dunkl-Williams inequality). Let L  be 2-normed space. Then, 

4|| , ||

|| , || || , || || , || || , ||
|| , ||

y x y zx
x z y z x z y z

z ,                 (7) 

for each \{0}z L  and for each , \ ( )x y L V z , where ( )V z  be the subspace generated by the 

vector z .  

b) (Mercer inequality). If L  is a 2-pre-Hilbert space, then  

2|| , ||

|| , || || , || || , || || , ||
|| , ||

y x y zx
x z y z x z y z

z ,                 (8) 

for each \{0}z L  and for each , \ ( )x y L V z , where ( )V z  is the subspace generated by the 

vector z .  

Proof. а) Let L  be 2-normed space, \{0}z L  and , \ ( )x y L V z . Then,  

|| , || || , || || , || || , || || , || || , ||
|| , || || , || || , || || , || || , || || , ||

|| , || | || , || || , || |

2 || , || .

y y y yx x
x z y z x z x z x z y z

x z z x z z x z z

x y z y z x z

x y z

 

Analogously one can prove that  
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|| , || || , ||
|| , || || , || 2 || , || .

yx
x z y z

y z z x y z  

Finally, by adding the last two inequalities, we get the inequality (7).  

b) Let L  be 2-pre-Hilbert space, \{0}z L  and , \ ( )x y L V z . Then,  

2

|| , || || , || || , || || , || || , || || , ||

|| , || || , ||

1
|| , || || , ||

2 2 21
|| , || || , ||

|| , || ( , | )

2 2( , | )

(2 || , || || , || 2( , | ))

(2 || , || || , || (|| , || || , || || , || ))

y y yx x x
x z y z x z y z x z y z

yx
x z y z

x z y z

x z y z

z z

z

x z y z x y z

x z y z x z y z x y z

2 21
|| , || || , ||

(|| , || (|| , || || , ||) ).
x z y z

x y z x z y z

 

Hence, the above equality and the parallelepiped inequality imply the following  

2

|| , || || , ||2 2 2

2 || , || || , ||

|| , || || , ||2 2 2 21
2 || , || || , ||

(|| , || || , ||) || , || || , || 2 2

|| , || || , || 2

|| , || ( ) || , ||

|| , || ( ) ( (|| , || (|| , || || , ||) ))

( ) || , || (

x z y z yx
x z y z

x z y z

x z y z

x z y z x z y z

x z y z

x y z z

x y z x y z x z y z

x y z

2

|| , || || , || 2 1
2 || , || || , ||

(|| , || || , ||) 2 2

4|| , || || , ||

1 ( ) )

((|| , || || , ||) || , || ) 0.

x z y z

x z y z

x z y z

x z y z
x z y z x y z

 

Therefore, the inequality (8) holds true.  

Theorem 3. Let L  be a 2-normed space. The following statements are equivalent:  

1) For each \{0}z L  and for each , \ ( )x y L V z , where ( )V z  is a subspace generated by the 

vector z  the inequality (8) holds true.  

2) If , ,x y z L  is such that || , || || , || 1x z y z , then 

2
|| , || || (1 ) , ||

x y
z t x ty z ,                                                                 (9) 

for each [0,1]t .  

Proof. 1) 2) . Let suppose that the statement 1) holds true. Let , ,x y z L  be such that 

|| , || || , || 1x z y z . Then \{0}z L  and , \ ( )x y L V z . Clearly, for 0t  and 1t , the 

inequality (9) holds true. If (0,1)t , then 1) implies the following 

1

1

1

1

1

2|| , ||1
2 1 || , || || , ||

1
2 1 || , || || , ||

1
2 1

2

|| (1 ) , || (1 ) || , ||

(|| , || || , ||)

(|| , || || , ||) || , ||

(1 ) || , ||

|| , ||,

t
t

t
t

t
t
t

t

t
t

x y zt t
t x z y z

yt t x
t x z y z

t t
t

x y

t x ty z t x y z

x z y z

x z y z z

x y z

z

 

i.e. the inequality (9) holds true.  

2) 1) . Let suppose that the statement 1) holds true. Let \{0}z L  and , \ ( )x y L V z . Then, 

for 
|| , || || , ||

,
yx

x z y z
L  holds true 

|| , || || , ||
|| , || || , || 1

yx
x z y z

z z  and if we let that 
|| , ||

|| , || || , ||

y z

x z y z
t , according to 

2) we get that  
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|| , || || , ||

|| , || || , || 2

|| , || || , ||

|| , || || , || || , || || , || || , || || , ||

2|| , ||

|| , || || , ||

|| , || 2 || , ||

2 || (1 ) , ||

,

yx
x z y zyx

x z y z

y z y z yx
x z y z x z x z y z y z

x y z

x z y z

z z

z  

i.e. the inequality (8) holds true.  

Remark 1. In [13] it was proved that for each , ,x y z L  such that the sets { , }x z  and { , }y z  are 

linearly independent the following inequality holds true 

|| , || | || , || || , || |

|| , || || , || max{|| , ||,|| , ||}
|| , ||

x y z x z y zyx
x z y z x z y z

z .              (10) 

Hence, using the fact that for each , ,x y z L  holds true 

| || , || || , || | || , ||x z y z x y z  

we get that (10) implies the following inequality  

2|| , ||

|| , || || , || max{|| , ||,|| , ||}
|| , ||

y x y zx
x z y z x z y z

z .              (11) 

Clearly, the inequality (11), which in fact is generalization of Massera and Schäffer inequality 

([15]) and holds true into an arbitrary 2-normed space is stronger than Dunkl-Williams inequality 

(4), but is weaker than the inequality (10).  

Also, using the fact that for each , ,x y z L  holds true  

2 2|| , || | || , || || , || | 2 || , || 2(|| , || || , ||) 2 || , ||x y z x z y z x y z x z y z x y z , 

the inequality (10) implies that the following inequality holds true  

2 22|| , || 2(|| , || || , ||)

|| , || || , || max{|| , ||,|| , ||}
|| , ||

x y z x z y zyx
x z y z x z y z

z .             (12) 

Clearly, the inequality (12) is stronger than (11), but weaker than (10).  

3. CHARACTERIZATIONS OF 2-PRE-HILBERT SPACE  

In this section we will give two characterizations of 2-inner product, which in fact are 
generalizations of Kirk-Smiley characterization ([10]) and Gurarii-Sozonov characterization ([9]).  

Theorem 4. Let L  be a 2-normed space. If the following inequality holds true  

2|| , ||

|| , || || , || || , || || , ||
|| , ||

y x y zx
x z y z x z y z

z ,               (13) 

for each \{0}z L  and for each , \ ( )x y L V z , then L  be a 2-pre-Hilbert space.  

Proof. Let 0 , \ {0}z L  and , \ ( )x y L V z  be such that || , || || , ||x z y z . The inequality (13), 

applied to the vectors x  and 
1y  implies the following  

1 1

1

1

|| , || || , ||1

2 || , || || , ||

|| , || || , ||

2 || , || || , ||

|| , || || , ||

|| , ||

x z y z yx
x z y z

x z y z yx
x z y z

x y z z

z

 

1

2
|| , ||

|| , || .

x y z

x y z
 

This, according to Theorem 1 means that L  is a 2-pre-Hilbert space.  
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Corollary 1. Let L  be a 2-normed space. If , ,x y z L  be such that || , || || , || 1x z y z  holds true 

and for each [0,1]t  holds  

2
|| , || || (1 ) , ||

x y
z t x ty z , 

then L  is a 2-pre-Hilbert space.  

Proof. The proof is a direct implication of Theorem 3 and Theorem 4.  

Before we go on the following characterization of 2-pre-Hilbert space, we must mention that the 

condition 4II  of Theorem 1 is equivalent to the following conditions:  

'
4 .II  It exists a real number 0 1  such that 0 0|| , || || , ||x y z x y z , for each ,x y L  such 

that || , || || , || 1x z y z .  

''
4 .II  It exists a real number

 
1

0 2
(0, )t  such that  

0 0 0 0|| (1 ) , || || (1 ) , ||t x t y z t x t y z  

for each ,x y L  such that || , || || , || 1x z y z .  

Theorem 1 and the stated above imply the validity of the following Corollary.  

Corollary 2. Let ( ,|| , ||)L  be a 2-normed space. L  be a 2-pre-Hilbert space if and only if for each 

\{0}z L  is satisfied one of the following conditions:  

1) It exists a real number 0 1  such that 0 0|| , || || , ||x y z x y z , for each ,x y L  such 

that || , || || , || 1x z y z .  

2) It exists a real number 1
0 2

(0, )t  such that  

0 0 0 0|| (1 ) , || || (1 ) , ||t x t y z t x t y z  

for each ,x y L  such that || , || || , || 1x z y z .  

In the following Theorem, which actually is generalization of Tanaka result ([17]), we will prove 

that by weakening the conditions 1) and 2) given in Corollary 2, we get a new characterization of 

2-pre-Hilbert space.  

Theorem 5. Let ( ,|| , ||)L  be a 2-normed space. L  is a 2-pre-Hilbert space if and only if for each 

\{0}z L  is satisfied one of the following conditions:  

1) For each ,x y L  such that || , || || , || 1x z y z  it exists a real number 1  such that 

|| , || || , ||x y z x y z .  

2) For each ,x y L  such that || , || || , || 1x z y z  it exists a real number 1
2

(0, )t  such that 

|| (1 ) , || || (1 ) , ||t x ty z tx t y z .  

Obviously, the real numbers 1  and 1
2

(0, )t  can depend on ,x y L , for which 

|| , || || , || 1x z y z  holds true.  

Proof. Corollary 2 implies that it is sufficient to prove that the condition 2) implies that L  is a 2-

pre-Hilbert space, which according to Corollary 1 means that it is sufficient to prove that the 

condition 2) implies that , ,x y z L  is such that || , || || , || 1x z y z , then  

2
|| , || || (1 ) , ||

x y
z t x ty z ,  

for each [0,1]t . 

Let , ,x y z L  be such that || , || || , || 1x z y z . We may assume that the set { , }x y  is linearly 

independent. Consider the set  
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1
2

{ (0, ) | || (1 ) , || || (1 ) , ||}A t t x ty z tx t y z . 

The condition 2) implies that A . Therefore it exists 0 supt A . We will prove that 1
0 2

t . 

Since the convexity of the function || (1 ) , ||t t x ty z , [0,1]t , we will get that  

2
|| , || || (1 ) , ||

x y
z t x ty z , 

for each [0,1]t .  

Let suppose that 1
0 2

t . Then, the continuous of 2-norm implies that 0t A . The vectors 

0 0(1 )u t x t y  and 0 0(1 )v t x t y  satisfy || , || || , ||u z v z . Let be 0 || , ||
u

u z
x  and 0 || , ||

v
v z

y . 

The assumption implies that it exists a real number 1
1 2

(0, )t  such that  

1 0 1 0 1 0 1 0|| (1 ) , || || (1 ) , ||t x t y z t x t y z . 

Let 1 0 1 0* (1 ) (1 )t t t t t . Then 1
0 2

*t t  and also holds  

|| (1 *) * , || || * (1 *) , ||t x t y z t x t y z . 

This means that *t A , and that is contradictory to 0 supt A  and 1
0 2

*t t . Finally, the 

contradictory implies that 1
0 2

t .  

Corollary 3. Let ( ,|| , ||)L  be a 2-normed space. L  be a 2-pre-Hilbert space if and only if for 

each \{0}z L  is satisfied that 

|| , || || , ||
|| , || || , ||

x y x y

x y z x y z
x z y z ,             (14) 

for each ,x y L  such that || , || || , || 1x z y z  and ( )x y V z .  

Proof. We will prove that the condition is sufficient. If \{0}z L  and ,x y L  be such that 

|| , || || , || 1x z y z  and ( )x y V z , then  

2 2 2 2

2 2 2

2

|| (1 || , ||) , || (1 || , ||) || , || 2(1 || , ||)( , | ) || , ||

(1 || , ||) || , || 2(1 || , ||)( , | ) || , ||

|| (1 || , ||) , || ,

x y z x y z x y z x z x y z x y z y z

x y z y z x y z x y z x z

x x y z y z

 

i.e. the following equality holds true 

|| (1 || , ||) , || || (1 || , ||) , ||x y z x y z x x y z y z ,           (15) 

which is equivalent to the equality (14).  

We will prove that the condition is necessary. Let \{0}z L  and ,x y L  be such that 

|| , || || , || 1x z y z  and ( )x y V z . Then holds true the equality (14), which is equivalent to (15). 

But, ( )x y V z , and therefore 1 || , || 1x y z . The last, according to Theorem 5, means that 

L  is a 2-pre-Hilbert space. 

Remark 2. Since 1 || , ||x y z  depends on ,x y L  such that || , || || , || 1x z y z , we can deduce 

that the statement given in Corollary 2 is not an implication of the statements given in Corollary 
1. The last actually shows the advantage of Theorem 5.  

Example 1. In [11] it is proved that in the set of bounded arrays of real numbers l  by 

,

|| , || sup
i j

i ji j
i j

x x
x y

y yN

, 1 1( ) , ( )i i i ix x y y l  
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is defined a 2-norm. The last means that ( ,|| , ||)l  is real 2-normed space. It is easy to find that 

the vectors  

2
1 1 1
2 2 2

(1 ,1 ,...,1 ,...)
n

x , 
2 1

1 1 1
2 2 2

(0, 1, 1,..., 1,...)
n

y  and (1,0,0,...,0,...)z  

satisfy followings || , || || , || 1x z y z  and ( )x y V z . Further, 
2

1

2
|| , ||x y z , and therefore 

2 3 1
3 3 3 3 3 31

|| , || 2 || , || 2 42 2 2 2
(1 ,1 ,1 ,...,1 ,...), (2, , 1,..., 1,...)

n n

x y x y

x y z x y z
x y . 

So,  

7
|| , || 4 || , ||

|| , || 1 || , ||
x y x y

x y z x y z
x z y z . 

The last according to corollary 3, means that the 2-normed space ( ,|| , ||)l  is not 2-pre-Hilbert 

space.  

4. CONCLUSION  

In example 1, by using Corollary 3 is proven that ( ,|| , ||)l  is not 2-pre-Hilbert space. 

Analogously, other results obtained in this paper may find application in checking whether a 2-

normed space is 2-pre-Hilbert, as is the case with spaces ( ( ),|| , ||), 1pL p .  
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