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Abstract: In this paper we study the prime ideals space of a BL-algebra, proved that the prime ideals
space being a T, -space and also a stone space. Furthermore, we study the properties of the prime ideals
space.
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1. INTRODUCTION

The notion of BL-algebra was initiated by Héjek [5] in order to provide an algebraic proof of the
completeness theorem of Basic Logic. A well known example of BL-algebras is the unit interval
[0,1] endowed with the structure induced by a continuous t-norm. MV-algebra, Godel-algebras
and Product algebras are the most known class of BL-algebras. Cignoli et al.[3] proved that
Hdajek's logic really is the logic of continuous t-norms as conjectured by Hajek. At the same time
started a systematic study of BL-algebras, and in particular, filter theory ([6],[71.[9],[11],[12]).
Filter theory play an important role in studying BL-algebras. From logic point of view, various
filters correspond to various sets of provable formulas. Héjek introduced the notion of filters and
prime filters in BL-algebras and proved the completeness of Basic Logic using prime filters.
Another important notion of BL-algebras is ideal, which was introduced by Zhang [13]. Ideals of
BL-algebras has more complex than filters, so far little literatures. But it is a very important tool
to study logical algebras, Meng and Xin [8] systematically investigated the ideal theory of BL-
algebras. Following a standard method [1], In the paper we study the prime ideals space and its
important properties.

2. PRELIMINARIES
Let us recall some definitions and results on BL-algebras.

Definition 2.1. Analgebra (A,v,A,*,—,0,1) of type (2, 2, 2, 2, 0, 0) is called a BL-algebra if it
satisfies the following conditions:

(BL1) (A,v,A,0,1) is a bounded lattice,

(BL2) (A*,1) is a commutative monoid,

(BL3) x*y < zifandonlyif X<y — z (residuation),

(BL4) XAy =X*(X—>Y), thus Xx*(X —> y) = y*(y — X)) (divisibility),

(BL5) (X = y) v (y = X) =1 (prelinearity).

In what follows, A will denote a BL-algebras, unless otherwise specified.

Definition 2.2. A nonempty subset | of a BL-algebra A is said to be an ideal of A if it satisfies:
(1)oel,
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(12) (x >y ) €l and xe | implies ye | forall x,y € A.
Obviously, {0} and A are ideals of A. Anideal | is said to be proper if 1 = A.
Proposition 2.3. Let | be anideal ofa BL-algebra A.If x<yand yel then xel.

Theorem 2.4. Let X be a nonempty subset of a BL-algebra A. Then for all x e A, x € (X] if
and only if thereare a;,---,a, € X suchthat a, *---*a, — x~ =1.

Definition 2.5. Let A be a BL-algebra and | a proper ideal of A. Then | is said to be a prime
ideal if anbel impliessael orbel forany a,be A.

Theorem 2.6. Let A be a BL-algebra and | a proper ideal of A. Suppose S is a nonempty
subset of A and | NS =. If S is A-closed, then there is a prime ideal M of A satisfies
l<cMand M NS =U.

Definition 2.7. Anideal | of a BL-algebra A is said to be irreducible if, for any ideals J, K of
A 1 =JNnK implies | =J or | =K.

Proposition 2.8. Let | be an ideal of a BL-algebra A. Then | is irreducible if and only if | is
prime.

3. PRIME IDEAL SPACES

In the sequel, 1(A) denotes the set of all ideals of a BL-algebra A and P1(A) be the set of all
prime ideals. Let X be a nonempty subset of A, we define S(X) ={P € PI(A): X &« P} and
T(A) ={S(I): 1 € I(A)}. It can be checked that S(X) = S((X]). If X ={a}, we write S(a)
instead of S({a}).Denotes T,(A) ={S(a):a e A}.

Theorem 3.1. T(A) is atopology on PI(A).
Proof: It is obvious that S(0) =& and S(A) = PI(A).

Suppose |, € I(A), € Awhere A is a nonempty index set. Then for some o € A,

Jsa,)={PePI(A):1, « P}

ael

={PePI(A):|JI, 2P}
=s(Jr.Dp

aeA

Hence U S(1,)eT(A).Forany I,J € I(A), by proposition 2.8 we have

S)NSQ)={PePI(A):1 P}n{P PI(A):J « P}
={PePI(A):1nJ P}
Thus S(1)"S(J) e T(A). Therefore T (A) forms a topology on PI(A).
lemma 3.2. T, (A) is abase of T(A).

Proof: Since for any | € 1(A), we have S(I) = US(a) , it follows that T, (A) is a base of

ael

T(A).

Recall that a ring R of sets is a nonempty set of subsets of a set S such that if A,B € R, then
ANnBeR and AUB e R. The following shows that T, (A) is a ring of sets.
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Lemma 3.3. Forany a,be A,S(a)nS(b)=S(aab),S(@)uS(b)=S(avhb),thatis,
T, (A) is aring of sets.

Proof: For any a,b € A, we have

PeS(a)1S(b) iff Pe S(a)and P e S(b)
iff agPandbgP
iff anbeP
iff PeS(anb)

PeS(a)US(b) iff Pe S(a) or P e S(b)
iff agPorbegP
iff avbegP
iff PeS(avb).

Hence S(a) nS(b) =S(aAb)and S(a) u S(b) = S(a v b), which shows that T,(A) is a ring
of sets.

Lemma 3.4. If O is a compact open subset of topological space (T (A),P1(A)), then O =S(a)
for some a e A.

Proof: Since O is openand T,(A) is abase of T(A), thereare B < A such that
O =U{S(b):b e B},

Noticing O is compact we have b,,---,b, € B satisfying

O=S(,)U---US(b,).
By Lemma 3.3, O=S(b, v:--b,).
Definition 3.5. A nonempty subset F of a lattice L is said to be a lattice filter if F satisfies:
(i) Forany x,yelL,xeF and x<y imply yeF,
(i) x,y € F implies xvyeF.

It is obvious that any lattice filter of a lattice is v -closed.

For any nonempty subset H of L, <H > denotes the least lattice filter containing H, called
as the lattice filter generated by H . It is easy to check that

<H>={xelL:x>a A--na,,da, ,a, € H}.
Lemma 3.6. Suppose X,Y are two nonempty subsets of A. If
N{S(x) :xe X} fS(y):yeY},
then there are nonempty finite subsets X, < X ,Y, < Y such that

N{S(X¥) :xe X} US(y):yeYo}.
Proof: We proceed by the following steps:
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Step I. We prove < X >((Y]=D. If < X >((Y]# C, then by Theorem 2.6 there is a prime
ideal P of A such that (Y] P and P(1<X >=& . Hence P ¢ S(y) for all yeY and
PeS(x) forall xe X,andso P& J{S(y):yeY}but Pe({S(x):xe X}, a contradiction.

Step Il. Let ze< X >((Y]. By z e< X > we know that X, A---X, <z for some
Xg, o, X, € X. Thus S(X; A-+-X,) < S(z). By Lemma 3.3 we have

(i) S(x)N---NS(x,) = S(2)
From z € (Y] it follows that
Vo = (> (v > 7)) =1
for somey,,---, ¥y, €Y by Theorem 2.4. We now prove that
(i) S(2) = S(y,)U---US(yn).
Indeed, if thereis P € S(z) —S(y,)N---NS(y,,), then z ¢ P but
PeS(x)U---US(x,)
Thus y,,---, Yy, € Pand by
Vo > (o (¥ > 27)) =1
we have z € P, a contradiction, (ii) holds.
By (i) and (ii) we obtain S(x,)(---NS(X,) < S(y,)U---S(y,,)-
Lemma 3.6 has a number of interesting corollaries.
Corollary 3.7. Forany a < A, S(a) isa compact open subset of the topological space PI(A).

Proof: In Lemma 3.6 we take X ={a}to get the desired result.

Lemma 3.8. The family of compact open subsets of PI1(A)is a ring of sets and is a topological
base.

Proof: This is immediate from Lemma 3.3, Lemma 3.4, Lemma 3.2 and Corollary 3.7.
By Lemma 3.4 and Corollary 3.7 we have

Corollary 3.9. An open subset O of the topological space PI1(A) is compact iff O =S(a) for
some a € A.

Corollary 3.10. The topological space PI(A) is compact.
Proof: It is immediate from S(1) = PI1(A) and Corollary 3.7.
Lemma 3.11. The topological space P1(A) isa T,-space.

Proof: Let 1,J € PI(A) with | = J .Suppose that | —J = & without loss of generality. Then
J e S(I) but I € S(I). This shows that PI(A) isa T,-space .

Definition 3.12. A Stone space X is a topological space X satisfying:

(i) X isa T,-space.

(i) 1t {X, e H} and {Y, : B € K} are nonempty families of nonempty compact open sub-
sets of X where H, K are two index sets and
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U{X, raeH}c (Y, : B K},
then there are finite subsets H, = H and K, c K such that

U{X, raeH =Y, Be K}
Theorem 3.9. The topological space PI(A) is a Stone space.

Proof: It follows directly from Lemma 3.6, Corollary 3.7 and Lemma 3.11.
In what follows we discuss further properties of PI(A). For any subset U of PI(A), the interior,
exterior and closure of U are denoted by Int(U), Ext(U)and U respectively, and denote

AU)={P:PeU}.
Lemma 3.14. For any subset U of PI(A) and a < A, we have ae AU iff S(a)(\U =J.
Proof: It follows that
aeAU < aeP forall PeU
< PgS(a) forall PeU
< S@NU=g
The proof is complete.
Theorem 3.15. For any subset U of P1(A) we have
(i) S(AU) = Ext(U),
(i) U =PI(A)—Ext(U)={P € PI(A): AU c P},
(iii) Int(U) = PI(A) - Ext(U).

Proof: Since
PeS(AU) < AU ¢ P

< ag P for some a e AU
< P e S(a) for some a e AU

< P e Ext(U) (by Lemma 3.4) .

it follows that S(AU) = Ext(U), (i) holds.

Corollary 3.16. Let U be any sunset of PI(A), then U isdensein PI(A) iff A(U) ={0}.
Proof: Indeed, U is dense in PI(A)iff Ext(U) = iff S(AU) = & by Theorem 3.15 (i) iff
AU) ={0}.

4. CONCLUSION

In this paper we investigate further important properties of ideals of a BL-algebra. We study the
prime ideals space of a BL-algebra, proved that the the prime ideals space is a T, -space, furth-
ermore it is also a stone space. We study the further properties of the prime ideals space, especial-

lly the properties of the interior, exterior and closure of U where U is a subset of PI(A).
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