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Abstract: The problems of constraint torsion, algorithm of design of prismatic bodies of arbitrary section 

are considered in the paper on the basis of Lagrange variation principle, R-function procedure and 
Bubnov-Galerkin’s method. Worked out algorithm is applied to a design of prismatic body with rectangular 

and arbitrary section and a cavity of different form; numeric convergence of results which correspond to 
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comparisons are given. 
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1. INTRODUCTION 

In practice in machine-building constructive elements in the form of prismatic bodies of arbitrary 

section (star gear, polygons, etc.) with a cavity of different form to reduce the weight without 

lessening their strength are often used. In design of these constructive elements it is necessary to 
know the state of these elements – elastic or elastic-plastic one. The elements of any engineering 

structure independent of their purpose should be lasting, rigid and light and least material-

consuming. So, one of the basic problems of design is to study elastic and elastic-plastic state in 
elements of machines or elements of structure of a given form and to develop on the basis of 

carried out investigations new more rational constructive forms with given strength. So optimal 

design of prismatic elements of a structure of arbitrary section in machine-building and 
investigation of their strength quality are actual problems, which require an application of modern 

methods of design and programming which allow to take into consideration real conditions of 

operation, configuration of a given element and properties of material. Classic methods and 

algorithms in Mechanics of Deformable Rigid Bodies are inadequate for the solution of practical 
problems. So it is reasonable to work out new algorithms of methods of solution on the basis of 

existing ones which will allow us to carry out extensive investigations without any difficulties. 

2. STATEMENT OF THE PROBLEM OF CONSTRAINT TORSION 

Consider elastic prismatic body of arbitrary section with a cavity of different form in Cartesian 

system of coordinates оxyz under given surface load (z=  ), where oz is directed along the 

generatrix, that is, parallel to side surface (Fig. 1). 

If to state the task of elastic balance of the body in its integrity, our problem is to determine 
displacements u, v, w, which will satisfy (in a given field, occupied by the body) Lame’s equation 

of equilibrium with boundary conditions [1]. Their integration in a given field presents a serious 

difficulty of both computational and algorithmic character [2] due to their complex contours and 

multi-coupling of cross section. So we have to refer to different approaches of simplification or 
technologies of lowering the order of the systems of equations. One of the ways to simplify them 
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is the use of variation principles [1] and utilization of a concrete hypothesis in accordance with 

stated problem. 

 
 

Fig. 1. Of elastic prismatic bodies of arbitrary section with a cavity 

It is known that the solution of the problems of un-constraint torsion of elastic prismatic rod with 
the forces applied to its ends, was given by Saint-Venan [3] in the form 

),,(,, yxwzxvzyu                    (1) 

where    is a constant angle of torsion per unit of the length of a rod, (x,y)  is Saint-Venan’s 
function of torsion, determined from equations with boundary conditions: 
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where a,b   are sides of cross section of a rod. 

Solution (1) corresponds to concrete distribution of loads, applied to the ends of a rod and is 

equivalent to a given moment. From relationship (1) it is seen that all cross sections are freely 

turned and do not depend on the length of prismatic body. In a case when the bend of cross 
sections is complicated and in some cases even impossible, there appear in these sections normal 

stresses Zz, directed along axis z. To account these stresses, displacements of arbitrary point in 

elastic body are presented in the following form 

),y,x(w,x)z(v,y)z(u I                                          (3) 

where   is torsion angle,  I 
 relative torsion angle. 

In this case deplanation is dependent on the change of relative torsion angle along the axis of a 

body. The main shortcoming of this solution is a necessity of additional statement of coincidence 
of the first derivative of torsion angle relative to torsion angle. 

In (3), unknown values are    and , respectively, to determine them Lagrange variation 

principle [1] is used in the form  

    ;0dvPuPdzdZYZ zy zxz

z

zxxy zzzz 







                (4) 

here xzz ZYZ ,,  are components of stress tensors; 

zxyzz  ,,   components of strain tensors;  

yzxz PP ,   components of tensor of external load. 
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Using (3) on the basis of Hooke and Cauchy laws, we determine the components of stress and 

strain tensors and substituting them into (4), we build the system of resolving equations. 

3. BUILDING THE SYSTEMS OF RESOLVING EQUATIONS 

Computing the components of stress and strain tensors and using the form of displacements as in 
(3), then substituting them into Lagrange variation equation (4) and having in mind arbitrary 

character of variations , , we get differential equations with boundary conditions [47]. To 
do it, we compute   
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where 
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E  is elasticity modulus; G  shear modulus;    Poisson’s ratio;   Lame constant;   
I
 

derivatives on z. 

Varying displacements (3) and components of strain tensor (5) 

,w;xv;yu II       (7) 
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Substituting relations (6)  (8) into (4) and accounting arbitrary character of variations , , we 
get the following expressions:  
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 To integrate the system of equations (9)  (12) we will reduce them to a more convenient 
form:   

;0r II2IV           (15) 
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So, with hypothesis (3) we get complete set of the systems of equations for the problems of 

constraint torsion. Knowing concrete geometry of the section and surface loads the problems of 
constraint torsion may be solved. 

4. DEVELOPMENT OF THE ALGORITHM OF INTEGRATION OF THE SYSTEM OF 

RESOLVING EQUATIONS ON THE BASIS OF THE METHODS OF R  FUNCTION AND 

SUCCESSIVE APPROXIMATIONS 

To integrate the system of resolving equations (15)  (18) of the balance of prismatic bodies of 

non-classical section the methods of Rvachyev’s R  function and successive approximations are 
used. 

The point of this algorithm consists in the following: 

1) when assumed that in zero approximation 0
1
 , we solve equations of the function of 

torsion (17) with boundary conditions (18); 

2) using this solution (), we calculate coefficients of equations (15), (16), and then solve 

them and determine the form of ; 

3) using further solutions (15) and (16), we compute coefficients of equations of the 

function of torsion and solve (17) and (18) over again; 

4) using this solution we compute coefficients of equations (15), (16) and then solve them. 

This process goes on till 

     .y,xy,x i1i    

is not fulfilled. 

In zero approximation the solution of equation of the function of torsion coincides with Saint-

Venan’s solution [3], when the section of a given body is rectangular, in opposite case to build 

them a method of R  function is used. 

For prismatic body of rectangular section the form of torsion function is zero and successive 

approximations has the form:   
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All coefficients of above-mentioned equations are calculated on the basis of Gauss method [8,9] 
with different number of couplings and weights. 

Assuming that coefficients of equations (15) and (16) are calculated, we build their solutions in 

the form   

),rz(chc)rz(shczcc
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Arbitrary constants с1, с2, с3, с4  are determined from conditions z=0 and z= . 

So, the solution for prismatic bodies of rectangular section is built. In cases when the section of a 

given body differs from classical form, construction of the systems of coordinate functions 
(torsion function) leads to sufficient complications. That is why Rvachyev’s method of R - 

function [1016,20,3138] and Bubnov-Galerkin’s method are used to build the system of 
coordinate functions (torsion function).  

Now we will proceed to construction of coordinate successions with Rvachyev’s method of R - 

function. 

To this effect in boundary conditions (18) we will realize some transformations, that is form 

Cartesian system of coordinates we will move to curvilinear orthogonal system (n  normal,   
tangent). In this case they have the form    
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area. 

Structure of solution of boundary problems (17) and (18) has the form [16]:  
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here  D1  is a differential operator:   
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Ф  is undefined component of the structure of solution, which is usually presented as in [15]: 
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here Сij  are unknown coefficients, subjected to determination; X i (x),Y j (y)  complete system 

of basic polynomials (power ones, trigonometric, Chebyshev’s and others).  

Power polynomial: Xi(x)=x
i
,   Yj(y)=y

j
. 

Trigonometric polynomial: Xi=
b

yi
cosY,

a

xi
cos

i





;(a=xmax-xmin, b= ymax-ymin). 

Chebyshev’s polynomial: 

 Xi(x) = Ti(x),   Xj(y) = Tj(y); 

 T0 =1,    T0 = 1; 

 T1 = x,    T1 = у; 
 Ti+1 = 2xTi + Ti-1,  Tj+1 = 2yTj + Tj-1. 

 

5. COMPUTING EXPERIMENT 

Example 1. study of stress-strain state of elastic prismatic bodies of rectangular section with 

a cavity of different form in problems of constraint torsion. 1.1. Consider elastic prismatic 

body of rectangular section, with one of sections (z=0) fixed and another one (z= ) with given 

values of torque moment; side surfaces are load-free. In this case arbitrary constants in (22) are 

determined from conditions 

z=0;  =0;  
I =0; z= ; 

II =0; H1

I2III r  , 

which have the following form: 
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where I1=(Ip+2Id+Ik). 

Substituting the values 4321 c,c,c,с into (22), we obtain  

 chrzthrshrzthrrz
rI

I

1

H2   .      

 (27) 

In design the following values were used as geometric and mechanical parameters:  

а=1sm; b=1cm, 0.5sm, 0.2sm;  =1sm, 2sm, 4sm, 10sm; ,3.0
6102E  kg/sm

2
. 

Prismatic bodies of rectangular section were calculated with these parameters by analytical means 

[1719], by the method of R – function to build the function of torsion and then using the 
technology of the method of successive approximations. Here (25) is taken as a structure of 

solution, and the forms of the borders of a given body are determined by the following way 
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0  Rconjunction.  
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This statement of the problem is solved when surface load (I2H=0.005) is applied to the surface 

x= a and y= b of a given body (I2H/ ), results entirely coincide, though the type of solution 

differs: 
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Solution taken in the form (22), does not satisfy condition of equilibrium: 
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On the side z=  in boundary conditions there appear an additional term of the type 
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The character of alteration of this expression along the length of the body qualitatively coincides 

with alteration of stress component Zz10
4
/G. At z=0 this expression equals to I2H, and (29) 

together with (30) satisfy an equilibrium of a given body.  

1.2. Consider the same problem, but relative to the body with rectangular cavity with dimensions 

a1 = a/10; b1 = b/10, surfaces of the cavity are load-free. Here (25) is taken as a structure of 
solution, and the forms of the borders of a given body are determined by the following way: 
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In this problem in cavity area the following boundary conditions are added for torsion function:   

;ax 1  ;0)y(
x
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y

            (31) 

1.3. Consider the same problem but relative to circular cavity with the following 
dimension: r1 = b/10.  

Side surfaces of the cavity are load-free. In this problem in cavity area the following 

boundary conditions are added for torsion function:   

;yxm
n

u
g
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


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g  is the border of  the area;   , m – directing cosines. 

Here (25) is taken as a structure of solution, and the forms of the borders of a given body are 

determined by the following way: 
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1.4. Consider the problem of prismatic body with elliptic cavity with dimensions а1 = a/5, b1 = 

b/10. Internal surface of a cavity is load-free and has the following boundary condition (32). 

In this statement the convergence of results was investigated depending on the length of a given 
body and area of section. Here (25) was taken as a structure of solution, and the forms of the 

borders are determined in the form 
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Table 1 and Figure 2,3 give numeric values of normal Zz10
4
/G and tangent Zy10

4
/G and Zx10

4
/G 

of stresses depending on alteration of the area of section and cavity in prismatic body (in this 

Table and Figures the sections of the cavity are numbered in the following order: No 1 with 

continuous, No 2  with elliptical, No 3  with circular, No 4 with rectangular cavities) under 

the same external loads  М=0.005kgsm.  

Table 1. Results of components of tensors of stresses in different points of rectangular section with a cavity 

of different form 

      Body section,        № №1 №2 №3 №4 

Body 

dimensio

ns(sm) 

coordinates 

(x,y,z) 

    

1; 1; 4 0.5; 1; 0  a1=0.2; b1=0.1 r1=0.1 a1=0.1; b1=0.1 

Zz104/G  -9.345516 -8.935965 -8.900153 -8.859863 

1; 0.5; 4 0.5; 0.5; 0  a1=0.2;b1=0.05 r1=0.05 a1=0.1;b1=0.05 

  -18.836651 -18.729805 -18.621264 -18.533714 

1; 0.2; 4 0.5; 0.2; 0  a1=0.2;b1=0.02 r1=0.02 a1=0.1;b1=0.02 

  -82.397427 -82.325114 -82.235968 -81.482507 

1; 1; 4 0.5; 0.5; 4  a1=0.2; b1=0.1 r1=0.1 a1=0.1; b1=0.1 

Zy104/G  0.910884 0.910695 0.897783 0.883679 

1; 0.5; 4 0.5; 0.25; 4  a1=0.2;b1=0.05 r1=0.05 a1=0.1;b1=0.05 

  1.469455 1.275869 1.250898 1.396066 

1; 0.2; 4 0.5; 0.1; 4  a1=0.2;b1=0.02 r1=0.02 a1=0.1;b1=0.02 

  2.461752 2.385211 2.391336 2.369444 

1; 1; 4 0.5; 0.5; 4  a1=0.2; b1=0.1 r1=0.1 a1=0.1; b1=0.1 

Zx104/G  -0.910884 -0.893061 -0.897783 -0.883679 

1; 0.5; 4 0.5; 0.25; 4  a1=0.2;b1=0.05 r1=0.05 a1=0.1;b1=0.05 

  -4.115811 -4.265356 -4.128368 -4.291374 

1; 0.2; 4 0.5; 0.1; 4  a1=0.2;b1=0.02 r1=0.02 a1=0.1;b1=0.02 

  -25.582242 -25.622898 -25.702542 -25.436417 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The changes of components Zz of stresses in different points of rectangular section with a cavity of 

different form 
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Fig. 3. The changes of components Zy and Zx of stresses in different points of rectangular section with a 

cavity of different form 

From results given, in Table 1, it is seen that the greatest value Zz10
4
/G acquires at continuous 

section, with the decrease of the section the value is increasing. The least value of Zz10
4
/G is 

observed for prismatic body with rectangular cavity. The character of change of the value of 

normal stress (successively decreasing or increasing) for prismatic body of rectangular section 
with/or without a cavity of different form is roughly constant.  

The values of tangential stresses Zy10
4
/G and Zx10

4
/G in prismatic bodies of rectangular section 

with cavities of different configuration are different values (Table 1).  

Fig. 2, 3 show the curves Zz10
4
/G, Zy10

4
/G and Zx10

4
/G for three points on the plane at 

 =10см. In conclusion we should note the following: the values of the components of stress 

tensors depend on location of a cavity and for each concrete case they should be calculated anew. 

These curves, beginning from fixed plane in the distance equal approximately to 1 or 1,5 cm of 

continuous section, come nearer to axis oz in Zz10
4
/G and become parallel to changes in tangent 

stresses Zy10
4
/G and Zx10

4
/G. Projections do not effect quality changes of the values of 

components of stress tensors [21  30, 39]. 

Combination of Rvachyev’s method of R  function and the method of successive approximations 
in problems of constraint torsion in prismatic bodies of rectangular section with cavities of 

different form gives satisfactory results. 

Example 2. Numeric study of stress-strain state of prismatic bodies of arbitrary section with 

cavities of different form 

2.1. Consider in Cartesian system of coordinates oxyz prismatic body of arbitrary section (Fig. 4), 

with one section (z=0) fixed (u=0, v=0, w=0), and the second – with given torque moment 




 xdP
G

1
ydP

G

1
I

yzxzH2
   

with geometric parameters: а=1sm, b=1sm, 0.5sm, 0.2sm; a2=a/10sm; b2=b/10sm; =1sm, 2sm, 

4sm, 10sm; Е=210
6
kg/sm

2
;=0,3. Side surfaces are free.  

 

y 
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Fig. 4. Prismatic bodies of arbitrary section 
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To build the solution of this problem a combination of methods of R  function and successive 
approximations was used. Here (25) was taken as a structure of solution, and the equations of the 

border of area (section) are determined by the following way: 

),
50

)
40

)
30

)
201

((((    

where  

;ff 2011  ;ff 4032  ;ff 6053  ;ff 8074  ;10095 ff   

 

f1 = (bc)
2 
–(a2y+bx)

2
; f2 =(ad)

2 
–(ay - b2x)

2
; f3 = -x; f4 = b - y; f5 = y; 

 

f6 = a - x; f7 = x; f8 = y + b; f9 = -y; f10 = x + a; c = a + a2; d = b + b2. 

 
Solution taken in the form (22), could not satisfy the condition 

 
,1

I

yZxY

H2

F
xz


 

 

as a correspondence between tangential stresses and shears is not reached. That is why in building 

of equation of equilibrium from Lagrange variation principle in the right side of condition there 
appear additional terms of the form 

I

H2

kdIII

H2 I

II

I

I






. 

The character of changes of this relationship along the length of the body coincides qualitatively 

with Zz10
4
/G and at z=0 equals to one. 

2.2. Consider the same problem relative to the body with rectangular cavity with dimensions a1 = 

a/10; b1 = b/10 and equation of the boundary: 

),))))(((((
60504030201

  

where 

;ff 2011   ;ff
4032

  ;ff
6053

 ;ff
8074

  
10095

ff  , 

;
b2

2y2b

0a2

)2x2a(

6






 





 

 
f1 = (bc)

2
 – (a2y + bx)

2
; f2 = (ad)

2
 – (ay - b2x)

2
; f3 = -x; f4 = b - y; f5 = y; 

 

f6 = a - x; f7 = x; f8 = y + b; f9 = -y; f10 = x + a; c = a + a2; d = b + b2. 

Inside the cavity the surfaces are load-free. In this problem in the area of a cavity for torsion 

function an additional boundary conditions are foreseen in the form (31). 

Equilibrium of a given body is fulfilled with additional term of the form  

    
I

H2

kdIII

H2 I

II

I

I






. 

2.3. Consider the same problem relative to circular cavity with the following dimensions: r1 = 
b/10.  

Side surfaces of the cavity are load-free. In this problem in the area of cavity for torsion function 

an additional boundary conditions are foreseen (32). 

Here expression (25) is taken as a structure of solution, and forms of boundary are set in the form 

);))))(((((
60504030201

  
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expressions 
51

  were given in previous items, and 

1

2

1

22

6
r2

)ryx( 
 . 

As in previous items the components of tangent stresses do not satisfy equilibrium (29), but 
together with (29) and (30) they do satisfy. 

2.4. Consider the problem given in 2.1, relative to the body with elliptical cavity with dimensions 

a1 = a/5; b1 = b/10. Internal surface is load-free and has the following additional boundary 

conditions (32).  

Here (25) is taken as a structure of solution, and geometry of the area is described by the 

following way: 

),))))(((((
60504030201

   

where 51   were described in previous items, and   

1
2

1

2

2

1

2

6


b

y

a

x
 . 

Table 2 gives numeric values of normal Zz10
4
/G and tangent Zy10

4
/G and Zx10

4
/G stresses 

depending on the change of area of section and of a cavity of prismatic body (in given Table the 

sections of the cavity are numbered in the following order: No1 with continuous, No 2  with 

elliptical, No 3  with circular, No 4  with rectangular cavities) under the same external loads 

М=0.005kgsm. 

Table 2. Results of components of tensors of stresses in different points of arbitrary section with a cavity of 
different form 

            Body section, No № 1  № 2 № 3 №4 

Body 

dimensions 
(sm) 

Coordinates 

(x.y.z) 

    

1; 1; 10 0.5; 1; 0 a2=0.1; b2=0.1 a1=0.2; b1=0.1 r1=0.1 a1=0.1; b1=0.1 

Zz104/G  -8.182672 -8.144766 -8.138466 -8.106696 

1; 0.5; 10 0.5; 0.5; 0 a2=0.1; b2=0.05 a1=0.2; b1=0.05 r1=0.05 a1=0.1; b1=0.05 

  -17.104551 -17.051614 -17.093644 -17.046135 

1; 0.2; 10 0.5; 0.2; 0 a2=0.1; b2=0.02 a1=0.2; b1=0.02 r1=0.02 a1=0.1; b1=0.02 

  -73.058062 -72.977007 -72.964707 -72.880484 

1; 1; 10 0.5; 0.5; 10 a2=0.1; b2=0.1 a1=0.2; b1=0.1 r1=0.1 a1=0.1; b1=0.1 

Zy10
4
/G  0.830817 0.820099 0.828352 0.821741 

1; 0.5; 10 0.5; 0.25; 10 a2=0.1; b2=0.05 a1=0.2; b1=0.05 r1=0.05 a1=0.1; b1=0.05 

  1.179061 1.119732 1.096325 1.065383 

1; 0.2; 10 0.5; 0.1; 10 a2=0.1; b2=0.02 a1=0.2; b1=0.02 r1=0.02 a1=0.1; b1=0.02 

  2.108771 2.084743 2.079564 2.047034 

1; 1; 10 0.5; 0.5; 10 a2=0.1; b2=0.1 a1=0.2; b1=0.1 r1=0.1 a1=0.1; b1=0.1 

Zx104/G  -0.845528 -0.832807 -0.834592 -0.831307 

1; 0.5; 10 0.5; 0.25; 10 a2=0.1; b2=0.05 a1=0.2; b1=0.05 r1=0.05 a1=0.1; b1=0.05 

  -4.239028 -4.196523 -4.189433 -4.175232 

1; 0.2; 10 0.5; 0.1; 10 a2=0.1; b2=0.02 a1=0.2; b1=0.02 r1=0.02 a1=0.1; b1=0.02 

  -23.188684 -23.174199 -23.170607 -23.160899 

From results given in Table 2, it is seen that the greatest value Zz10
4
/G acquires at continuous 

section, with a decrease of section the value is increasing. The least value of Zz10
4
/G is observed 

for prismatic body with rectangular cavity. The character of changes of the value of normal stress 

(successively decreasing or increasing) for prismatic body of arbitrary section with/or without a 

cavity of different form is approximately constant.  

The values of tangential stresses Zy10
4
/G and Zx10

4
/G in prismatic bodies of arbitrary section  

and with cavities of different configuration are different values (Table 2).  
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Figures 5, 6 illustrate the curves Zz10
4
/G, Zy10

4
/G and Zx10

4
/G for three points on the plane at 

 =10. The values of components of stress tensors depend on location of the cavity and for each 

concrete case of the process, occurring in prismatic body, they should be calculated anew. The 

change of these curves is observed: beginning from fixed section in the distance approximately 2 

– 2,5 sm , the value Zz10
4
/G comes nearer to axis oz, and values Zy10

4
/G and Zx10

4
/G become 

parallel to this axis. Projections do not effect quality changes of values of components of stress 
tensors.  

Combination of Rvachyev’s method of R- function and the method of successive approximations 

may be used in problems of constraint torsion in prismatic bodies of arbitrary section and a cavity 
of different configuration. They will always give positive results, corresponding to practice 

requirements. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Fig.5. The changes of components Zz of stresses in different points of arbitrary section with a 
cavity of different form 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

Fig. 6. The changes of components Zy and Zx of stresses in different points of arbitrary section with a cavity 

of differenr form 

6. CONCLUSION 

 According to results obtained we could draw the following conclusions:  

 1. In solution of torsion problems it was stated that the part of the body should be 
calculated according to the hypothesis of constraint torsion, and other parts – on the basis of the 

theory of plane sections. 

 2. Prismatic body of rectangular section is in equilibrium due to appearance of additional 

term in boundary conditions (z= ). 

 3. In practice prismatic elements of the structure of rectangular section with a cavity may 

be used when their dimensions do not exceed a/10 or b/10. 
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 4. Location of the cavity and its configuration has a great importance, so in each concrete 

case the calculations should be done anew. 

 5. In prismatic bodies with arbitrary section and a cavity the distribution of values of 

tangential stresses is non-uniform. So in each quadrant there are areas working on tension and 

compression. Calculations of a part of prismatic body may be checked by the hypothesis of 
constraint torsion, and others – by the theory of plane sections. These prismatic bodies of arbitrary 

section with cavities of different form are in the state of equilibrium due to additional term in 

boundary conditions (z= ). 

6. At small section (a/10 or b/10) of a cavity, prismatic bodies with continuous section 
may be used instead of prismatic ones. For concrete elements of technical structures with 

inclusions and cavities the studies should be carried out anew, choosing new rigidity of a given 

prismatic body. 
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