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Abstract: The main goal of this paper is to introduce a new bitopological approaches to rough sets. Suggested
approaches depend on two topologies, generated by a general relation. The first topology is a right topology
whose subbase is the family of right neighborhoods and a subbase of the other topology, left topology, is the
family of left neighborhoods, with respect to that general relation. Some Pawlak’s concepts are redefined, some
properties are deduced and supported with proved propositions and many counter examples. We compare
among suggested approaches, by using their approximations and accuracy measures. Hence, the best of them is
determined. Finally, we deduce that traditional rough set model is a special case of any suggested model in this
study.
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1. INTRODUCTION

Rough set theory, proposed by Pawlak in 1982 [1], is a very useful mathematical tool in classification
of a collected data under equivalence relation. In Pawlak’s study, any rough set is replaced by two
crisp sets called lower and upper approximations of it.

Recently, many scientists have developed traditional rough set model, in many ways such as [2-13].
Especially, many interesting extensions of it have been made by using topological spaces such as [14-
16].

This paper aims to introduce a bitopological space using a new bitopological near open set called
semi-bi-open set (53;). This bitopological space consists of two topologies. In our study, we consider

that, every topology of this bitopological space is a view of the interested problem. These two
topologies are generated by only one general relation, hence, there is no contradiction between these
two views. Consequently, semi-bitopological rough concepts are introduced and compared with their
traditionals. We conclude relationships among traditional and proposed semi-bitopological
approaches to rough sets in a diagram. Finally, we illustrate that, Pawlak’s model is a special case of
any proposed semi bitopological approach to rough sets.

2. PRELIMINARIES

In this section, some basic definitions are introduced. Pawlak’s concepts were defined in [1] as
follows.

Definition 2.1 Let X be the universe set and let E be an equivalence relation, representing our
knowledge about the elements of X . Then(X,E) is called Pawlak approximation space. An

equivalence class of E determined by element X is
[X]_ ={X e X:E(x) = E(X)}.

Definition 2.2 Let (X,E) be a Pawlak approximation space. Lower, upper and boundary
approximations of a subset Ac X are defined as

E(W)=UAK, 4, Ah E(A)= A, :[X], A A% g} and BND_ (A) = E(A)-E(A).
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Definition 2.3 Let (X,E) be a Pawlak approximation space. The degree of crispness of Ac X is
determined by the accuracy measure, defined as

IEAN Eopy 22,
|E(A)]

oL (A) =

Definition 2.4 Let (X,E) be a Pawlak approximation space and let X< X, rough membership
relations to a subset Ac X are defined as

xeAif xeE(A) and xeAif xeE(A).
Definition 2.5 Let (X,E) be a Pawlak approximation space and let A,B < X, rough inclusion
relations are defined as

AcB,if E(A)cE(B) and AcBjif E(A)c E(B).

Topological rough approximations proposed by Wiweger [17] is the first generalization of rough set
approximations based on topological structures. In his work, the lower and upper approximations are
replaced by the interior and closure operators, respectively.

Definition 2.6 [17] Let (X, 7 ) be a topological space and let A< X . Interior and closure operators,

respectively, are
int (A)=A{Ger :Gc A} and cl (A)=~{Ger :AcG}
A subset Ac X is called open set if Aez and the family of all these open sets is denoted by O .

The complement of any open set is called closed set and the family of all closed sets is C .
1

Remark 2.1 Let (X,7 ) be a topological space and let Ac X . If int;(A) = cl;(A), then 4 is called

i-exact set, otherwise, it is called -roughset.

Definition 2.7 [18] Let (X, 7 ) be a topological space and let A< X . Asubset A is called
Semi —open(Si —open) set, if Ac cIi (inti (A)).

The family of all S -open sets is denoted by OS . The complement of any S -open set is called S -

closed set and the family of all S -closed sets is denoted by CS .

Definition 2.8 [19](X,rl,rz) is called bitopological space, where ) and T, are two topologies,
defined on a nonempty set X . In (X,rl,rz) asubset Ac X is called

S12 —openset,if Ac cI2 (intl(A)).
The family of all S12 -open sets is denoted by OS12 . The complement of any S12 -open set is called

S12 -closed set and the family of all S12 -closed sets is denoted by CS12 :

3. SEMI-BI-NEAR ROUGH SET APPROXIMATIONS
In this section, we define a new semi-bi-near open set, called Sb_ -open set, defined on a bitopological
I
space (X, 7 7, ) which is generated by a general relation. The subbase of the first topology 7 (right
r r

topology) is the family of right neighborhoods ( R = {y € X : xRy}) and the subbase of the second
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topology 7, (left topology) is the family of left neighborhoods (R = {y € X : yRx}), with respect

to a relation R. Relationship between traditional rough set approximations and suggested semi-bi-
rough set approximations is deduced.

Definition 3.1 Let (X,rr ,rl) be a bitopological space and let A X . A is called
Sbi—Openset if Ag{cllintrAuclrintlA}.
Remark 3.1 Let (X, T, ) be a bitopological space generated by a general relation, then
(@) The complement of Sbi -open set is called Sbi -closed set.
(b) The family of all Sbi -open sets is denoted by OSbi .
(c) The family of all Sbi -closed sets is denoted by CS "
Proposition 3.1 Let (X, T, ) be a bitopological space generated by a general relation, then

(a) Or c OS < OS

Tl bi

(b) OI c OS < OS

ro bi

Proof

(@ O = U{Ac X:A=int A} u{AgX:Agcllint A} =OSI
c UV{Ac X :Agcllint Aucl intI A} :OSb..

We can get the proof of (b) at the same way as (a).
The following example illustrates that, containments in Proposition 3.1, may be proper.

Example 3.1 Let R be a binary general relation defined on a nonempty set X ={a,b,c,d} defined
by R={(a,a),(a,c),(a,d),(b,b),(b,d),(c,a),(c,b),(c,d),(d,a)}. Hence, the subbase of 7z is

{{a,c,d} {b,d} {a,b,d}{a}} and the subbase of 7, is {{a,c,d}, {b,c}, {a,b,c}, {a}}. Then,
T = {X,9,{a,c,d} {ab,d},{b,d} {a d} {a}.{d}} and T = {X,9, {a,c,d}, {a,b,c}, {b,c},
{a,c}, {a},{c}}. Consequently, OSrI ={X,,{a}{d}, {a,d}, {b,d}, {a,b,d}{a,c,d}}, OSIr =
X9 {a}, {c}. {a.c}, {b.c}, {a,b,ck{acd}}, OS5 = {X,I{a}r{c}.{d}{ac} {ad},

{b,c}, {b,d}, {c,d}, {a,b,c},{a,b,d}, {a,c,d}, {b,c,d}}. Hence, {c},{a,c}, {b,c}{ab,c} ¢
OSrI and {d},{a,d},{b,d},{a,b,d}gzOSIr. But, {c}, {d}, {a,c}, {b,c}, {b,d}, {a,d},

{a,b,c}, {a,b,d}, {b,c,d} € OSbi.

Definition 3.2 Let (X,7 ,rl) be a bitopological space generated by a general relation. For all ie
{r,1}, topological lower (resp. topological upper) approximation of any subset Ac X denoted by

Jri A (resp. T_ A) and defined as follows

U'A=fGer :Gc A} and T A=~{Her :AcH}.
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Definition 3.3 Let (X,7 ,rl) be a bitopological space generated by a general relation. For all |
{S | ,SI ,Sb,}, | -interior (resp. I -closure) of any subset Ac X, denoted by intI (A) (resp.
CII (A)), are

intI A={GeOl:Gc A} and CII A=n{H eCl : Ac H}.
Definition 3.4 Let (X,7 ,rl) be a bitopological space generated by a general relation. For all |

{S_.S .S, }. I -lower (resp. I -upper) of Ac X, denoted by VUA (resp. ™ A)are
I r I |

! A=int A and T A=cl A

|
Proposition 3.2 Let (X,7 ,rl) be a bitopological space, generated by a general relation, and let
Ac X, then

S
bi

S
@y Acld acl

S
bi

S
ol Acl " Acl"AcAact Act Ac?T A
Proof
@4 A=UGer :Gc A} cU{Ge0S G A} =[} " Al c {GeO0S G A=

[l " Alc Ac{HeCS :AcH}= [T Al ~{HeCS :AcH}= [T Al

bi rl
c n{H eric :AcH}=T A
The proof of (b) is similar to the proof of (a).
The following example illustrates that, the inverse of Proposition 3.2, does not hold.

Example 3.2 According to Example 3.1, we can create Table 1, as follows

Table 1. Comparison among proposed bitopological lowers and uppers.

Ac X ¢5” A ¢SI, A isbi A sti A Tslr A TSH A
{c} % {c} {c} {c} {b,c.d} {c}
{d} {d} % {d} {d} {d} {b,c.d}
{a.c} {a} {a.c} {a.c} {a.c} X {a.c}

{a,d} {a,d} {a} {a,d} {a,d} {a,d} X
{b,c} %) {b,c} {b,c} {b,c} {b,c,d} {b,c}

{b,d} {b,d} %) {b,d} {b,d} {b,d} {b,c,d}

{c.d} {d} {c} {c.d} {b,c,d} {b,c.d} {b,c,d}

{a,b,c} {a} {a,b,c} {a,b,c} {a,b,c} X {a,b,c}

{a,b,d} {a,b,d} {a} {a,b,d} {a,b,d} {a,b,d} X

{b,c,d} {b,d} {b,c} {b,c,d} {b,c,d} {b,c,d} {b,c,d}
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From Table 1, Sbi -lower approximation is the greatest lower of the studied bitopological lowers and
Sbi -upper approximation is the smallest upper of the studied bitopological uppers. So, Shi -approach is
the best bitopological approach in this study.

Proposition 3.3 Let (X,rr,rl) be a bitopological space generated by a general relation and let

A Ec X .Forall | {SrI ,SIr : Sbi} we can prove the following properties
@4 X= TI X=Xandd @= TI =0,
0 Ac Ac oA
©If AcE, then 4 Ac {'E and T AcTE

@y AUE 5l AUl E
©@T AnEc?T AnT E
| | |

) LA :[TI Al andTI A° =[¢I A] , where A’ s the complement of A.

Proof By using the properties of bitopological lower and bitopological upper approximations,
defined in Definition 3.4, we get the proof, directly.

The following example illustrates that, containments in Property (c), may be proper.

S s
Example 3.3 According to Example 3.1, if A={b} and E ={a,b}, then %A= 1" A=
S S S S
" A =0, tooA=T A=T A={B}, JPE=L"E=L" E={a}.?, E={ab,c},
rl Ir bi rl

S S S
rl

? E= {abd} and T E= {ab} Hence Vhazr JUE, L Ax LTE,

Ir bi

P A;tib'E,Ts A+ TS E,TS A;tTS EandTS A;tTS E.

rl rl Ir Ir bi bi

The following example illustrates that, a containment in Property (d), may be proper.

S S

Example 3.4 According to Example 3.1, if A={b} and E ={c,d}, then "a= LT A=
S S S S s S

V' A=0, L "E={3 y "E={d},{ " E= {c.d}, ! " {cd}=4{bd}, | " {bcd}=

s s s s s
{o,c} and 4 " {b,c,d}= {b,c,d}. Hence, + " AUE = 4 " AUl " E, I " AUE =
S

S S S S
V" AU "Eandd " AUE 24" AUl "E.
The following example illustrates that, a containment in Property (e), may be proper.

Example 3.5 According to Example 3.1, if A={a,b} and E ={a,c,d}, then TS A ={a,b,c},
rl
T A={abdy, T A={ab}, T E=T E=1T E= X, T {a@={ac

Ir bi rl Ir bi rl
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T {a}={adyand T {a}= {a} . Hence T ANE =T AnT ET AnE
Ir bi rl rl rl Ir
= TS AmTS EandTS ANE = TS AmTS E.
Ir Ir bi bi bi

Proposition 3.4 Let (X,7 ’T|) be a bitopological space, generated by a general relation and let

AEc X, foral I € {S | ,SI ,Sb_}, the following properties hold.

@T AUE>T AuT E
| | |

oI AREcl Anl'E

Proof By using the properties of interior and closure operators, also from Definitions 3.3 and 3.4, we
get the proof, directly.

The following example illustrates that, a containment in Property (a), may be proper. Let | = Sb. :
Example 3.6 According to Example 3.1, if A={a,c} and E ={d}, then Ts A={a,c}, TS E
bi bi

={d} and TS AUE =X . Hence, TS AUE = Ts A v TS E.

bi bi bi bi

The following example illustrates that, a containment in Property (b), may be proper. Let | = Sb. :
1

S -
Example 3.7 According to Example 3.1, if A={b,c} and E ={b,d}, then U ={b,c},

V" E =fo,dyand 4 * ANE =@ . Hence, ¥ " AnE =4 " An " E.
Proposition 3.5 Let (X,7 ,z-l) be a bitopological space, generated by a general relation and let

Ac X, forall I € {S | ,SI ,Sb_}, the following properties hold

@y Aa=1"A
T T A=T A
Proof

() LetY = V' AandletueY.Buty = 4 A = w{G €Ol :G c A}. Then, forall Gc A,
we have GcY , hence, u e il Y , it follows that, Y < il Y . On the other hand, from Proposition

3.3, we can deduce that, ¥ Y C Y . Consequently, V'Y =v . Thus VU A =" A,

(b) From Proposition 3.3, we have, TI A" = [~LI Al" . Then, TI A = [J«I A°1" and then,

TI TI A= TI AT = (@ A1) T =" A°T°, from Property (a) of Proposition
35 wehave, ¢ 4 A" =1' A° Hence, [~LI~LI AT = [~LI AT = TI A . Thus, TlTl A:Tl A

Proposition 3.6 Let (X,7 ,z-l) be a bitopological space, generated by a general relation and let

Ac X, forall I € {S | ,SI ,Sb_}, the following properties do not hold
@™ I A=l' A
|
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G T A=T A

The following example proves Property (a), of Proposition 3.6,at | =S

rl

S S
Example 3.8 According to Example 3.1, if A={a,c,d}, then L " A ={a,c,d} and TS ™" A

rl

S
rl

S
:X.Hence,TS I"Aa=d"A.

rl

The following example proves Property (b) of Proposition 3.6,at | =S

Ir

S
Example 3.9 According to Example 3.1, if A={a,b}, then TS A ={a,b,d} and J " TS A

Ir Ir

= {a}. Hence, 4 " T, A= TS A.

Ir Ir
Lima 3.1 Let (X,7 ,rl) be a bitopological space, generated by a general relation, and let
r

A Ec X .Forall I € {S | ,SI ,Sb_} we can prove the following property
[c] A] :intIAc.
Proof
[cIIA] = X-HeCl:AcH}= U{(X-H)eOl:(X-A) (X -H)}
= U{GeOI:GC A} =int A",

Proposition 3.7 Let (X,7 ,rl) be a bitopological space, generated by a general relation, and let

AEcX . Forall I € {SrI ,Slr,Sbi} we can prove that

VA-Ec VAl E
Proof
Where A—E = AmEC,then V' A-E =l' ARE = intIAmEC = intIAmintlEc. By
using Lema 3.1, we get intIAmintI EC = intlAm[cII E]C = intIA—cIIE. But, intlEchI E.
Consequently, int A—cl E < int A-int E= V' A-L"E Hence, ' A—EC) A-L'E

The following example illustrates that, a containment in Proposition 3.7, may be proper,at | =S .

bi

S .
Example 3.10 According to Example 3.1, if A={a,b,c} and E ={a,c}, then ¥ " A={a,b,c},

S S S S S
" E=fa,cyandd " A—E=F . Hence, 4 " A—E= L " A-L " E.
Proposition 3.8 In a bitopological space (X,z 7, ), generated by a general relation, for any two

subsets A E < X , the following property may be not satisfied for all 1 € {S | ,SI ,Sb,}
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T A-E=T A-T E
Proposition 3.8 is proved by the following example, at | = Sb_ :

Example 3.11 According to Example 3.1, if A={c,d} and E ={c}, then TS A={b,c,d}, TS E
bi bi
={c} and TS A—E ={d}. Hence, TS A-E # TS A—TS E.

bi bi bi bi
Definition 3.5 In a bitopological space (X,z ,rl) generated by a general relation, for all
r

| e{r,I,SrI ,Slr,Sbi} asubset Ac X s called
(@) | -Totally definable (I -exact), if 4 A=T A=A
(b) | -Internally definable, if +' A= A and T AzA.
(c) | -Externally definable, if V' AzA and TI A=A.

(d) I -Rough, if +' A% A and T AZA.

The following example illustrates Definition 3.5, at | = Sb. .

Example 3.12 From Example 3.1, we get the following results: {b}, {a,b} are Sb. -externally
definable sets, {c,d}, {a,c,d} are Sb_ -internally definable sets and {a}, {c}, {d}, {a,c}, {a,d},
{b,c}, {b,d}, {a,b,c}, {a,b,d}, {b,c,d} are Sbi -exact sets.

Proposition 3.9 In a bitopological space (X,7 7, ), generated by a general relation, for any subset

A c X, the following properties are satisfied

(@ A is r-exact > A'is SrI -exact > A'is Sbi -exact.
(b) A is |-exact - A is SIr -exact > A'is Sbi -exact.
(c) Ais Sbi -rough — A'is SrI -rough — A is r -rough.
(d) Ais Sbi -rough —> A'is SIr -rough — A is | -rough.

Proof

(@) Let Ac X is r -exact set, then "A = T A = A.From Proposition 3.2, we have, VWA C
s | Sb' s | Sb' Sb'
irAgi'AandTS AgTS Ac? A Therefor,d " A=d " A=1T" A=
bi rl
TS A = A.Consequently, A is S | -exact setand A is Sb_ -exact set.

rl

We can get the proof of (b), (c) and (d) at the same way as (a).
4. SEMI-BI-ROUGH CONCEPTS

In this section, Pawlak’s concepts are redefined and studied. The relationships among suggested semi-
bi-rough concepts and their traditionals rough concepts. A comparison among all these approaches by
using their accuracy measures is given. Finally, we conclude the relationship among all studied
approaches to rough sets in a diagram.
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Definition 4.1 In a bitopological space (X,7 3 ) generated by a general relation, we can determine
r

the degree of crispness of any subset A X, by using a bitopological accuracy measure denoted by
CI A, forall I € {r,I,S | ,SI ,Sb_} and it is defined as
VA
C A=—, A=9¢.
T A /

Proposition 4.1 Let (X, 7 ,rl) be a bitopological space and let Ac X, then

() 0<C A <C_ A <C_ A<l

rl bi

() 0SC A <C_ A <C_ A <l

Ir bi
Proof By using Proposition 3.2, we get the proof directly.

The following example studies a comparison among suggested semi-bitopological approaches, by
using their accuracy measures.

Example 4.1 From Example 3.1, we can create Table 2, as follows

Table 2. Comparison among studied approaches by using their accuracy measures.

{a} | {c} | {d} | {a,c}|{a.d}| {b,c} | {b,d}| {c.d}| {a,b,c}|{ab,d} {b,c d}

cC A 12 0 1/3 1/2 1/2 0 2/3 1/3 1/3 3/4 2/3
S

rl
CcC A 12 1/3 0 1/2 1/2 2/3 0 1/3 3/4 1/3 2/3
S

Ir
CcC A 1 1 1 1 1 1 1 2/3 1 1 1
S

bi

From Proposition 4.1, we can deduce that, the best approach to rough sets, in this study, is Sb_ -
approach. Also, from Table 2, we notice that, by using Sb_ -set approximations, many subsets of X

become crisp, although they are not S | -exact sets or SI -exact sets.
Ii r

Definition 4.2 Let (X,7 ,rl) be a bitopological space generated by a general relation and let

Ac X.Forall I € {r,1,S | ,SI , Sb_} I-rough membership relations, denoted by € and EI , are

|
defined as

xe A if xel A and xe A if xel A

|
Proposition 4.2 In a bitopological space (X,7 ,rl) generated by a general relation. For any subset
Ac X andforall I € {r,I,S | ,SI , Sb_}, we can prove that,

(@) xe A=xe, A=Xe A= xeA=xe, A= xe, A= xe A

r rl bi bi fl

(b) X6 A=xe A=Xe A=xeA=xe, A=xe, A= xe A
! Ir bi bi Ir

Proof From Proposition 3.2, we get the proof, directly.

The following Example illustrates that, the inverse of Property (a), does not hold.
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Example 4.2 According to Example 3.1, if A={a,d}, B={a,b}, C={a,c,d} and E ={b,c},

thend " E=@ 4 " E={b,c},{ " B={a}, T c=x.1 B={ab}T B={abd}

bi bi rl

S s
TS B={ab,d}, ¥ " A={a} and ¥ " A={a,d}. Hence, c £ E but c e E, d £ A but d
Ir rl bi Ir

e, Abg BbutbeB, beChutbe C,ce Bbutce Bandde Bbutde, B.

bi bi bi bi rl bi Ir

Definition 4.3 Let (X,7 ,rl) be a bitopological space generated by a general relation and let

AEcX . Foral I € {,l,S | ,SI , Sb.} I-rough inclusion relations, denoted by <  and <
|
are

Ac E if ' Acl'E and AZIE it 1 Act E

The following example illustrates Definition 4.3, at | = Sb. .

Example 4.3 According to Example 3.1, if A={a,b}, C={a,c}, D={b,d} and E ={c,d}, then

s s 5
V" A={a}, 1" C={ac} TS D:{b,d}andTS E ={b,c,d}. Hence, Ac Cand Dc_ E.

bi bi S bi
i

Although, Az C and D¢ E.

Remark 4.1 From our study, we can conclude the relationship among suggested approaches to rough
sets of Ac X in Diagram 1, as follows

4 )

Top (resp. Ts ) | = A

| - —

L5 (resp. 151r) | —|

| 15mi
I (resp. 41) | —

|
Ty (resp. 1) U /\ sy

Diagram 1: Relationship among studied approaches to rough sets.

From Diagram 1, we can deduce that, any suggested semi bitopological approach to rough sets is
better than its traditional. In addition, Sb_ -approach is the best model of proposed models in this
1

study.

5. CONCLUSION

In this paper, proposed semi bitopological approaches, depend on a general relation. If we repleace

this relation by an equivalence relation R, then we get R=R = [x]R andthen = = z-l , generated
X X r

by R. It followes that, (X,7 ,rl) becomes Pawlak space (X,R). Therefor 4. A=R(A)and
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TI A:§(A), for all | e {r,I,SrI,SIr, Sbi}. It means that, in this special case, all properties and
concepts of any suggested approach must be returned to their traditionals.

In addition, as we proved, Sbi -approach to rough sets is the best suggested approach in this study.
Hence, by using this model, any vague concept has a big chance to be a precise concept.
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