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Abstract: The general initial-boundary-value problem for Transmission lines was formulated. Its concise and 
convenient general solution was derived analytically by using the Laplace transform method. The obtained 

solution was verified with the existing solutions for particular values. Moreover, a couple of particular 

examples were also presented in order to validate the Laplace transform method. The obtained results were also 

compared with the existing results. The present approach was seemed to be simple and did not involve complex 

mathematics. Therefore it would be useful and helpful for engineering students. The tendency of change in 

voltage with respect to physical parameters; C, G, L, R, x, and t as well as boundary parameter  was 
examined. It was found that the dependency of physical and boundary parameters on voltage intensifies as we 

move away from the source (x=0) as well as time increases for all aforementioned physical parameters. In 

addition, at any time t=to, u(x, to)  ex for fixed values of parameters C, G, L, R, t and . Furthermore the 
voltage decays as physical parameters (C, G, L, R) rise whereas the voltage will intensify with the boundary 

parameter ..  

Keywords: Telegrapher's equation; Laplace transform, partial differential equations, Telegraph wire, 

Leakage, transmission line.

 

1. INTRODUCTION 

The ordinary electrical cable is incapable to transport the high frequency current and voltage wave. 

Therefore a special cable is constructed to support such the power and communication signals, which 
is called transmission lines (TLs). They have extensive use of 

1) supporting the production of uniform impedance (also called characteristic impedance) to prevent 

the reflection, 

2) carrying the electromagnetic wave signals very efficiently with minimal losses and reflections, 

3) carrying communication signals of high frequencies with minimal signal losses, 

4) carrying currents in the radio frequency range or higher with minimal power losses. 

The power losses, at microwave frequencies and above, in transmission lines become excessive and 
wave guides are used. Therefore, the TLs are also said to be guided transmission cable (or media), 

however, it is also considered as a type of TLs by some sources [1]. Furthermore other types of TLs 

are coaxial cable, optical fiber, ladder-line, strip-line, micro-strip, computer network media and etc. 

Consequently TLs are highly used for 

1) computer network connection, 

2) supporting the high speed computer data buses, 

3) communicating the data through optical fiber, 

4) distributing cable television signal and communicating the signals through telegraph  

5) studying the neural network in the brain [2]. 

The equation of state for elucidating the voltage and current, with respect to spatially and temporally, 
in TLs is called the Telegrapher's equation (TE). It was initially modeled by Oliver Heaviside in 1880 

[1]. Moreover, the detailed historical background had been surveyed eminently by many authors like 

[2].  
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In the present attempt, we present the concise and precise way of derivation of TE and then its 
solution. Other salient features of this attempt are: 

1) The general solution of general one dimensional TE-boundary value problem (BVP) is presented in 

a very convenient way. 

2) The effect of coefficients of TE on voltage, V, and current, I, is observed, 

3) The effect of boundary condition parameter on voltage, V, or current, I, is also examined. 

4) The derived (general) analytical solution is well compared with the existing particular solutions. 

This paper comprises four sections. The basic analysis and derivation of TE is presented in section 1. 

Section 2 contains its precise general solution while calculated-results are given in section 3. Finally, 
a conclusion is made in section 4. 

Many valuable contributions had been made on solving the Telegrapher's equation numerically like 

[3-5] and analytically [6-11]. We are interested to solve the Telegrapher's equation by using the single 
Laplace transform method (to make the way to find solution convenient, concise and precise for 

learners) despite of [11] whom used the double Laplace transform. 

2. BASIC ANALYSIS 

Consider an infinitesimal segment, dx, of (one-dimensional) Telegraph-wire as an electrical circuit, as 

shown in figure 1, having potential differences V(x,t) and V(x+dx,t), respectively, at points P and Q 

whereas I(x,t) is the current at any point x at any time t. 

 

Figure 1. Flow Schematic 

On using the Kirchhoff’s voltage law, we can write 
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and on using the Kirchhoff’s current law, we have 
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where R, L, C and G are, respectively, the (distributed) resistance, the inductance, the capacitance and 

the leakage factor (conductance to the ground). 

Next differentiate Eq. (1)  w.r.t. "t" and Eq. (2) w.r.t. "x", we yield, after simplification, 
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Similarly if we differentiate Eq. (2)  w.r.t. "t" and Eq. (1) w.r.t. "x", we yield,  
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where  

                         a=LC,  b=LG+RC and c=RG.                                                                                     (5) 

In general Eqs. (3)-(4) can be concatenated as: 
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such that  VIu , . 

3. GENERAL ANALYTICAL SOLUTION 

Consider boundary value problem (BVP) comprising Eq. (6) along with the following boundary 

conditions 

xx exu
t

exu  



 )0,(                                   ,)0,(                                                                       (7) 

                                          (8) 

 

where  

.

      ,        ,4      ,
2

,
2

     ,
2

2
     ,

2

2

2
2

2

121




























a

c

a

b
K

K
K

K
K

K

K
C

K

K
C

o

o

o

o

o

o

o








                                              (9) 

On applying Laplace transform both sides of Eq. (6) with the introduction of Eq. (7), we get 
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where cbsasf  2
 whereas u


is the Laplace transform of u. Hence, the general solution of Eq. 

(10) will be  
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Here the constants of integration, A and B, can be determined as A= 0 = B by using conditions given 

in Eq. (8). Accordingly Eq. (11) will reduce to 
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On applying inverse Laplace transform on above equation, we get 

  xtKtK
eeCeCtxu 21

21),(                                                                                                              (13) 

which is an exact solution of BVP (Eqs. 6 − 9). Let us consider a couple of following examples to 

justify the general solution, Eq. (13) of one-dimensional Telegrapher’s BVP under consideration. 

             Example 1 
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with respect to initial and boundary conditions: 
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On applying Laplace transform both sides of Eq. (14) with the introduction of Eq. (15), we get,  
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The general solution of Eq. (17) is 
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Consistently, A and B can be determined as A= 0 = B by using conditions given in Eq.(16). 

Accordingly Eq. (18) will reduce to   
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On applying inverse Laplace transform on above equation, we get 

txetxu ),(                                                                                                                                        (20) 

This is an exact solution of Telegrapher’s equation given in Eq. 14. Furthermore, we can get same 

(i.e. solution Eq. 20) just on taking (a, b, c, ) = (1, 1, 1, 1) in Eq. (13) as well as it is in coincidence 
with the solution given in [10] and [11]. 

. Example 2 

u
t

u

t

u

x

u
44

2

2

2

2















                   (21) 

with respect to initial and boundary conditions: 
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On applying Laplace transform both sides of Eq. (21) with the introduction of Eq. (22), we get, 
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The general solution of Eq. (24) is 
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On applying inverse Laplace transform on above equation, we yield 
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Here H(.) and (.) , respectively, are the Heaviside unit step and the Dirac delta  functions, whereas A 

and B are the constants of integration and will be determined later. Furthermore, Eq. (26) can be 

simplified as 

txt eeBAtxu   2)(),(                                                                                                                 (27) 

On the introduction of dirichlet condition of  Eq. (23), while Neumann condition of Eq. (23) satisfies 

automatically, we get A + B = 0. Therefore Eq. (27) reduces to 

txetxu ),(                                                                                                                                        (28) 

This is an exact solution of Telegrapher’s equation given in Eq. (21). Moreover, Eq. (13)  for (a, b, c, 

) = (1, 4, 4, 1), is also compared exactly with solution given in [8]. 

Next consider following a couple of examples in order to support the fact that the one-dimensional 

Telegrapher’s equation solved with different initial and boundary conditions can be solved with the 

help of the Laplace transform in a very convenient manner. 
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with respect to initial and boundary conditions: 
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On applying Laplace transform both sides of Eq. (29) with the introduction of Eq. (30), we get,  

  xseuss
x

u




 


122

2

2

                     (32) 

The general solution of Eq. (32) is 
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On applying inverse Laplace transform on above equation, we get 
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txxx extxtHBextxtHAetxu 2)()()()(),(                                                            (34) 

Furthermore Eq. (34) can be simplified as: 
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On the introduction of dirichlet condition of Eq. (31), while Neumann condition of Eq. (31) satisfies 

automatically, we get A + B = 0. Therefore Eq. (35) reduces to 

txetxu 2),(                                                                                                                                        (36) 

which is an exact solution of Telegrapher’s initial-boundary value problem given in Eq. (29) and 

compared exactly with solution mentioned in [6], [8] and [10]. 
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If we apply Laplace transform both sides of Eq. (37) with the introduction of Eq. (38), we have, 

  2)4(44 22

2

2





sesuss

x

u x


                   (40) 

Therefore the general solution of Eq. (40) will be 
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Eq. (41) will take the form after applying inverse Laplace transform; 
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On simplifying Eq. (42) further, we get 
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On the introduction of dirichlet condition of  Eq. (39), while Neumann condition of Eq. (39) satisfies 

automatically, we get A + B = 0. Therefore Eq. (43) deforms as: 
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This is an exact solution of Telegrapher’s BVP mentioned in Eq. (37). Consistently it compared 

exactly with solution given in [6], [8] and [10]. 

4. RESULTS AND DISCUSSION 

As we mentioned in the previous section that u(x, t) may be voltage or current, but for the purpose of 

convenience and concentration we fix u as voltage in the forthcoming results and discussion. The 

calculated results, on the basis of Eq. (13), were carried out for different values of C, G, L, R, x, t and 
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. The selected range of these parameters are C[4.9, 5.4]μF/km, G[6.8, 168]μ/−km,  L[0.0004, 

46750]mH/km, R[849, 1150]/km, x [0, 2]km, t[0, 1]sec and[0, 1]. The effects of these 

parameters on voltage u(x, t) was investigated and obtained-results were simulated in figures 2 to 5. 

Effect of C on u(x, t) 

In order to seek the dependency of voltage, u(x, t), on the capacitance C, it was plotted for fixed 

values of (G,L,R,, t) = (118.074μ/−km, 0.4675mH/km, 999.41/km, 1, 1sec), for three values of C 

namely C = {4.957, 5.157, 5.457}μF/km as shown in figure 2(a). It is not amazing to observe from the 

figure that voltage, u(x, t) decays as capacitance enhances. This figure also depicts that voltage, u(x, 

t), grows exponentially with x, which is not only coincidence with observed results of [6] but also in 

agreement with 
xeCxu 

3)1,(   where 21

213

KK
eCeCC  , which is obtained from Eq. (13). 

Furthermore 3)1,0( Cu   and at any time t = to, 4),0( Ctu o   where 21

214

KtKt oo eCeCC  . It 

reflects that the voltage, u(x, to), has analogous variational-trend as that of u(x, 1). It means that the 

variational-trend of u(x, t) is similar for all values of time. In addition, we can conclude that 
x

o etxu ),(  for fixed values of parameters C, G, L, R, t and . Furthermore the dependency of C on 

u intensifies as we move away from the sending end (x=0) as well as time increases. 

Effect of G on u(x, t) 

The effect of G on voltage, u(x, t), is presented in figure 2(b) when G = (4.957, 5.157, 5.457)μF/km 

for fixed values of (C,L,R, , t) = (5.157μF/km, 0.4675mH/km, 999.41/km, 1, 1sec). Figure 2(b) 

signifies that voltage, u(x, t) increases as x increases similar to the previous case but it decreases with 

G for all values of C, L, R, and . At any time, t = to, 
x

o etxu ),(  for fixed values of parameters C, 

G, L, R, t and , analogous to as predicted earlier in the above case (effect of C). 

Effect of R on u(x, t) 

Voltage u(x, t) depends on resistance R significantly. This fact is observed and displayed in figure 

2(c) for fixed values of (C,G,L,, t) = (5.157μF/km, 118.074μ/−km, 0.4675mH/km, 1, 1sec), for 

three values of R as mentioned in the caption of figure 2(c). Figure 2(c) depicts that voltage, u(x, t) 

increases with x and R for all values of C, G, L and . Once again we get same situation, at any time, t 

= to, 
x

o etxu ),(  for fixed values of parameters C, G, L, R, t and  

Effect of L on u(x, t) 

In contrast of previous cases, the dependency of Voltage, u(x, t) on inductance L is not significant for 

small values of L (i.e., 0 < L < 1 approximately). If L >> 1 then change in voltage occurs significantly. 

This fact is simulated in figure 2(d). Moreover, the variation of voltage u(x, t) at (x, t) = (0, 1) with 

respect to L is examined for fixed values of (C,G,L,, t) = (5.157μF/km, 118.074μ/−km, 

0.4675mH/km, 1, 1sec). This fact is observed and displayed in figure 3 for fixed values of (C, G, L, ) 

= (5.157μF/km, 118.074μ/−km, 0.4675mH/km, 1, 1sec). It describes that as L decreases, voltage at 

(x, t) = (0, 1) decreases, which is in coincidence with 21

213)1,0(
KK

eCeCCu   as obtained from 

Eq. 13. 

Effect of  on u(x, t) 

Figure 4 shows the variation of boundary parameter  versus voltage u(x, t) for fixed values of 

(C,G,L,R,) = (5.157μF/km, 118.074μ/−km, 0.4675mH/km, 999.41/km, 1), when t = 0, 0.5 and 1. It 

can be observed that voltage u(x, 1) increases as  increases as well as it also increases as time, t, 

increases. Consistently same observation was made as predicted for earlier described cases i.e., at any 

time, t = to, 
x

o etxu ),(  for fixed values of parameters C, G, L, R, t and . 
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Figure 2: Variation of u(x, 1) with x for (a) different values of C namely C = 5.457μF/km (solid curve), C = 

5.157μF/km (dotted curve) and C = 4.957μF/km (dotted-dashed curve); (b) different values of G namely G = 

68.074μ/−km (solid curve), G = 118.074μ/−km (dotted curve), and G = 168.074μ/−km (dotted-dashed 
curve); (c) different values of R namely R = 849.41/km (solid curve), R = 999.41/km (dotted curve) and R = 

1149.41/km (dotted-dashed curve); (d) different values of L namely L = 0.4675μH/km (solid curve), L = 

0.4675mH/km (dotted curve) and L = 0.04675kH/km (dotted-dashed curve). 

 

Figure 3: Variation of u(0, 1), when (C,G) = (5.157μF/km, 118.074μ/−km), (a) with R, for 
L = 0.4675mH/km; (b) with L, for R = 999.41/km. 
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Figure 4: Effect of  on (a) u(x 1) for x = 0 (solid curve), x = 1 (dotted curve), and x = 2 (dotted-dashed curve); 

(b) u(2, t) for t = 0 (solid curve), t = 0.5 (dotted curve), and t = 1 (dotted-dashed curve), when (C,G,L,R) = 

(5.157μF/km, 118.074μ/−km, 0.4675mH/km, 999.41/km). 

5. CONCLUSION  

The general initial-boundary-value problem for Transmission lines was formulated. Its concise and 

convenient general solution was derived analytically by using the Laplace transform method. The 

obtained solution was verified with the existing solutions for particular values. Moreover, a couple of 
particular examples were also presented in order to validate the Laplace transform method. The 

obtained results were also compared with the existing results. The present approach was seemed to be 

simple and did not involve complex mathematics. Therefore it would be useful and helpful for 
engineering students. 

The tendency of change in voltage with respect to physical parameters; C, G, L, R, x, and t as well as 

boundary parameter  was examined. It was found that the dependency of physical and boundary 
parameters on voltage intensifies as we move away from the source (x=0) as well as time increases 

for all C, G, L, R, x, and t. In addition, at any time t = to, 
x

o etxu ),(  for fixed values of parameters 

C, G, L, R, t and . Furthermore the voltage decays as physical parameters C, G, L, R rise whereas the 

voltage will intensify with the boundary parameter . 
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