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Abstract: This article deals with algorithmic complexity used in the determination of a Fibonacci’s sequence 
term. While exposing three correct algorithms, we have, in the light of complexity study of each one of them, 

released the one that is optimal. Numbers of Fibonacci’s sequence being for the majority very large, we 

preferred the using of computer to determine them. Thus, our readers will find in this literature as well the 

algorithms as their correspondents PASCAL programs. 
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1. INTRODUCTION 

If we look around us, we see that computers and computer networks are everywhere, activating a 
fabric of complex human activities: education, trade, entertainment, research, health, communication, 

and even war. One of the two technological factors causing this astonishing proliferation, is obviously 

the blowing speed with which the projections in micro-electronics and design of chips took us to 
increasingly fast hardware. 

However, though becoming increasingly fast, computers do not manage to solve certain problems for 
which the algorithms are  however  known. This is due to the complexity of the latter. This article 

aims at indicating to the reader which algorithm to choose vis-à-vis a problem as several correct 
algorithms can correctly solve the same problem. 

For this purpose, the paper is organized as follows: section 2 is devoted to a brief introduction to 

algorithms, section 3 outlines the Fibonacci’s sequence and different algorithms designed to find a 

Fibonnacci’s number. Lastly, section 4 is devoted to remarks and conclusion. 

2. GENERAL INFORMATIONS ON ALGORITHMS 

The word "algorithm" comes from the Latin word (Algorismus) taken after the name of Arab 

mathematician ALKHAREZMI or Al-khwarizmi, author of a handbook of popularization on Indian 

positional decimal calculation (about 830 A.D.) explaining its use and, especially, the handling of 
various algorithms that allow to carry out traditional arithmetic operations (addition, subtraction, 

multiplication, division, extraction of square roots, rule of three, etc). 

Definition 2.1 (Algorithm).  An algorithm is a well-defined procedure of calculation, which takes in 

input a value, or a set of values, and produces, at output, a value or a set of values. Thus, it is a 
sequence of calculations stages making it possible to pass from the input value to the output value [1]. 

Definition 2.2 (Program). A program is the realization (implementation) of an algorithm by means of 

a given language (on a given architecture). It is about the implementation of the principle. For 
example, during the programming, one will sometimes explicitly deal with the memory management 

(dynamic allocation into C Language for example) which is an ignored problem of implementation at 

the algorithmic level [2]. 

Definition 2.3 (Complexity of an algorithm).  The complexity of an algorithm is the measurement of 

the fundamental operations number which it carries out on a data file. Complexity is expressed like a 

data file size function.  

We note    the set of data whose size is   and   the cost of the algorithm on the data  . 
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Definition 2.4 (Complexity in the best case). It is the smallest number of operations which the 

algorithm will have to carry out on a data file of fixed size, here with  . It is a lower limit of 

algorithm complexity on a data file of size  . 

 

Definition 2.5 (Complexity in the worst case). It is the greatest number of operations which the 

algorithm will have to carry out on a data file of fixed size, here with  . 

 

Advantage:  It is about a maximum, and thus the algorithm will always finish before having carried 

out   operations.  

Disadvantage:  This complexity might not reflect the "usual" behavior of the algorithm, the worst 

case can only occur very seldom, but it is not rare that the average case may be as bad as the worst 

case. 

Definition 2.6 (Complexity on average).  It is the average of algorithm complexities on data files of 

size    (in any rigour, it is obviously necessary to take into account each data file appearance 
probability). 

 

Advantage: It reflects the "general" behavior of the algorithm if the extreme cases are rare or if 
complexity slightly varies according to data. 

Disadvantage:  In practice, complexity on a particular data file can be definitely more significant 

than complexity on average. In this case, complexity on average will not give a good indication of the 

algorithm behavior.  

In practice, we will be interested only in complexity in the worst case and complexity on average. 

Definition 2.7 (Optimality).  An algorithm is known as optimal if its complexity is minimal 

complexity among its class algorithms. 

We will be exclusively concerned with complexity in time of algorithms. It is sometimes interesting 

deal with others of their characteristics, like complexity in space (size of used memory capacity), the 

required busy bandwidth, etc.  

Frederic Vivien [2] suggests that it is necessary to have a model of machine on which the algorithm 
will be implemented (in the form of program) so that the result of an algorithm analysis may be 

relevant. In this paper, we will take as reference a model of  Random Access Machine (RAM) and 

single processor, where instructions are carried out one after the other, without simultaneous 
operations. 

The principal reason which pushes to analyze an algorithm is primarily to determine its characteristics 

and evaluate if it is appropriate to certain applications, or to compare it with other algorithms carrying 
out the same task. According to Sedgewick and Flajolet [3], resources in time and space (memory), 

especially in time, are the principal studied characteristics. Indeed, one seeks the execution time of an 

algorithm running on a particular machine and the memory capacity which it uses. But, in general, 

one is worried to analyze an algorithm independently of his effective environment: one seeks to obtain 
results on the principal characteristics of the algorithm from which one can derive a precise estimate 

from the resources necessary on a given machine. 

The algorithms analysis refers to two different concepts of the scientific study of a program 
performances [3].   

The first concept seeks to determine the magnitude order of the algorithm performance in worst of the 

cases (an upper limit). The essential objective of an analysis is to determine optimal algorithms, in the 
direction where one can prove, for any algorithm solving a particular problem, that there is a lower 

limit coinciding with his performances in the worst case. One calls sometimes this type of analysis 

calculation of complexity [4], although this terminology is adapted to the general study of relations 

between problems, algorithms, languages and machines.  

The second approach attempts to characterize in a rigorous way an algorithm performances by 
analyzing them in best case, the case average and worst of the cases, with methods that allow to refine 

at will the precision [5, 6, 7, 8, 9]. 
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3. FIBONACCI’S SEQUENCE 

Although having worked much for popularization in Occident of Al Khwarizmi work, in particular by 

carrying out the potential of the positional system and by working hard to develop it and spread it, 

Leonardo Fibonacci (15th century Italian mathematician after J-C) is rather more known for his 
famous sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55… Each one being the sum of its two 

predecessors [10].  

In this section, we present the above-mentionned sequence and its particular properties. 

Definition 3.1. (Numerical sequence).  Being given   a subset of , one calls sequence with values 

in   any map noted   such as: 

 

 

Definition 3.1. (Fibonacci’s sequence). More formally, the numbers of Fibonacci   are generated 

by the simple rule: 

 

No other sequence of numbers was studied or was as largely applied to so many fields as this 

sequence:  Biology, Demography, Art, Architecture, Music, to quote only these [11]. 

And together with the powers of 2, they are the favorite continuations of Data processing.  Indeed, 

Fibonacci’s numbers grow almost as quickly as the powers of 2 : For example,   is worth more 

than one million and  is a number of 21 digits!  In general   [3]. 

But which is the precise value of ,   ? Fibonacci himself would like surely to know it. To 

answer this question, we need an algorithm to calculate nth of Fibonacci’s numbers. 

3.1. An exponential algorithm 

An idea is the blind application of the recursive definition of.  . Here the resulting algorithm in 

"pseudocode ", a notation used in this paper: 

 
Function Fib1(n) 
If n=0 : Return 0 
If n=1 : Return 1 
Return Fib(n-1)+fib(n-2) 

The corresponding PASCAL program is:   

PROGRAM Fonction_Fib1(INPUT,OUTPUT) ; 
USES CRT; 
VAR 

K : INTEGER ; 
FUNCTION Fib1(n : INTEGER) : REAL ; 
BEGIN 
 IF n=0 THEN Fib1 := 0 ; 
 IF n=1 THEN Fib2 := 1 ; 
 Fib(n) := Fib1(n-1) + Fib1(n-2)  
END ; 
 
BEGIN 
 CLRSCR; 

WRITE(‘Saisir le rang du terme de la suite de Fibonacci ‘); 
READLN(K) ; 
WRITELN(‘Le terme équivalent vaut :’, Fib1(K)) 

END. 
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Even though we have the algorithm, there are three questions that we ask on this subject:  

1. Is this algorithm correct?  

2. How much time is it taken like function of n?  

3. Can we better do?  

The first question is debatable (it might not be asked) more especially as the algorithm, as well as the 

corresponding program, is precisely the Fibonacci’s definition of . But the second question deserves 

an answer.   

Let   be the number of operations which the computer needs to carry out to calculate Fib1(n). 

What can we say about this function? For not informed readers, if  is lower than 2, the procedure 

stops almost immediately after two operations.  Thus,  

For great values of n, there are two recursive invocations of Fib1 repeated   and 

2 times respectively, plus three operations of the computer (2 checks on the value of  and the final 
addition).   

Then   

Let us compare this result with the recursive relation of   : We see immediately that.  . 

This is a bad news: The execution time of the algorithm grows as quickly as Fibonacci’s numbers!  

 is exponential out of n, which implies that the algorithm is practically slow except for very small 

values of .  

Let us be a little more concrete on the disadvantage of an exponential growth. To calculate , the 

Fib1 algorithm carries out   elementary operations of the computer.  Time that 

that takes depends of course on the computer used.  Until 2006, Dasgupta et al. [12, 13] affirm that the 
fastest computer in the world was the NEC Earth Similator whose speed was 40. 10 12 elementary 

operations per second. Even on this computer, Fib1(200) would take at least seconds (  

years). This means that, if we begin calculation today, it would continue even after the sun is 

transformed into an enormous red star. 

But technology develops quickly: Speed of computers doubles every 18 months, a phenomenon 

sometimes called "Moore’s law".  With this extraordinary growth, perhaps Fib1 will be carried out 

more quickly by the future years machines. Cottet-Emard and Goetgheluck [14] remain pessimistic on 

this subject: Indeed, the execution time of Fib1(n) is proportional to , thus one will 

need 1,6 times more time to calculate   than  . And under the Moore’s law, computers become 

1,6 times faster each year.  Thus, if we can reasonably calculate   with this year technology, then 

the next year we will calculate . And the following year , and so on:  just a Fibonacci’s 
number moreover each year!  such is the misfortune of exponential time.  

In short, our naive and recursive algorithm is correct but hopelessly ineffective. We will need, to solve 

this problem, to resort to another algorithm.  

3.2. A polynomial algorithm 

Let us try to understand why Fib1 is so slow. The figure below shows the cascade of recursive 

invocations started by a simple call to Fib1(n). Let us notice how several calculations are repeated!   

A more significant arrangement would hold the intermediate results (values ) since 
they are known. 

Function Fib2(n) 
If n=0 Return 0 
Create Table F[0…n] 
F[0]=0, F[1]=1 
For i=2…n : 
F[i]=F[i-1]+F[i-2] 
Return F[n] 
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The corresponding PASCAL program is: 

PROGRAM Fonction_Fib2(INPUT, OUTPUT) ; 
USES CRT ;  
VAR 
 I, n : INTEGER ; 
 Fib2 : ARRAY[0..n] OF REAL ; 
BEGIN 
  CLRSCR ; 
  WRITE(‘Saisir le rang du terme de la suite de Fibonacci ‘) ; 
  READLN(n) ; 
  IF n=0 THEN Fib2 :=0 ; 
  Fib2[0] := 0 ; 
  Fib2[1] := 1 ; 
  FOR i := 2 TO n DO 
    Fib2[i] := Fib2[i-1]+Fib2[i-2] 
  WRITELN(‘Le terme equivalent vaut : ‘, Fib2[i]) 
END. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Determination of  by algorithm Fib2 

As with Fib1, the exactitude of this algorithm is evident by itself because it directly uses the 

Fibonacci’s definition of . How much time does it take?  The internal loop consists of a single 

operation of the computer and is carried out  times. Thus, the number of computer operations 

used by Fib2 is linear out of n.  

From the exponential one, we fall down to the polynomial one.  A great rupture in the execution time.  

It is perfectly reasonable to calculate   or even  . 

As we will see it in the continuation of this paper, the best algorithm makes all the difference of it.   

3.3. A thorough analysis 

In this paper, we will count the number of basic elementary operations carried out by each algorithm 
while keeping of sight that these basic operations require a constant number of occurences. This is a 

significant simplification. After all, a set of processor instructions has a variety of basic primitives 

(branch, storage in memory, comparison of the numbers, simple arithmetic, etc.) [15]. And rather than 
to make a distinction between these elementary operations, it is by far more suitable to classify them 

in the same category.    

But looking behind towards our processing of Fibonacci’s algorithms, we were less rigorous with 
what we had regarded as elementary operation.  It is reasonable to treat the addition as a simple 

elementary operation if small numbers are added, it is to say 32 bits numbers. But nth number of 
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Fibonacci has approximately a length of  bits and this can exceed 32 bits by far when n 

grows. The arithmetic operations on the arbitrarily large numbers cannot possibly be at constant time. 
We thus need to revisit our preceding estimates of execution time and to make them more honest.   

Fib1 which calculates on the additions of   now uses a number of basic operations brutally 

proportional to . In the same way, the number of operations required by Fib2 is proportional to 

n
2
, always polynomial out of  and in fact exponentially higher than Fib1. This correction with the 

analysis of the execution time does not decrease the rupture. But it is necessary to think of an 

algorithm much faster. 

3.4. A thorough analysis simple and fast algorithm 

Let us note F the Fibonacci’s sequence. Here a table giving the few first values:   
 

n 0 1 2 3 4 5 6 7 8 

F(n) 0 1 1 2 3 5 8 13 21 

 
Each term is thus equal to the sum of two preceding terms.  In a general way, Fibonacci’s sequence 

can be written as follows : 

 

It is the fundamental relation which characterizes the Fibonacci’s sequence. By replacing n by (n+1), 

one obtains: . 

One can notice that  (Each term is equal to the difference of the two 

following). 

Matrix algebra is very useful to study properties of this sequence: 

                                  

                                                                                                                                          (3.4.1) 

Or                            (3.4.2) 

Replacing (2) in (1), one finds:  

 

While developing successively, one obtains: 

 

Let us pose , one has then  

To study the powers of the matrix , one uses the traditional method of the diagonalisation. Let us 

start by seeking its eigenvalues [16]. They are roots of the equation:   

 

Its roots are    and . They are called golden numbers.   

Let us indicate some significant properties of these two numbers: 

(a)    (b)   (c)  (d)   
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(e)   (f)    (g)  

Let us multiply successively the two members of the equality (d) by  one obtains : 

; 

; 

; 

; 

… 

In a general way, one has :  

                   (3.4.3)  

By a similar reasoning, one has :                 (3.4.4)   

[10] 

By making substraction member by member with (3.4.3) and (3.4.4), one has : 

 

Then                   (3.4.5) 

This equality is greatly important importance: it makes it possible to replace, at will, calculations on 

the Fibonacci’s continuation by calculations on golden sections.   

It is clear that from this last equality comes out a very fast and non-recursive algorithm.   

Indeed, for great values of n, it is enough to calculate just 

 

with   and.   

The corresponding PASCAL program is: 

PROGRAM Fonction_Fib3(INPUT, OUTPUT) ; 

USES CRT ; 
VAR 
 n : INTEGER ; 
 Fib3, K, L : REAL ; 
BEGIN 
  CLRSCR ; 
  WRITE(‘Saisir le rang du terme de la suite de Fibonacci ‘) ; 
  READLN(n) ; 
  K := (1+SQRT(5))/2 ; 
  L := (1-SQRT(5))/2 ; 
  Fib3 := (EXP(n*LN(K)) - EXP(n*LN(L))) / SQRT(5) ; 
  WRITELN(‘Le terme équivalent vaut : ‘, Fib3) 
END. 

4. CONCLUDING REMARKS 

Throughout this paper, we showed that several algorithms can be applied to solve the same problem. 

However, an algorithm, though correct, can be difficult to implement even with a computer!  

Towards several algorithms relating to the same problem, the reader will have to study the complexity 

of each one of them and carry out which is optimal. It is then advisable to remember that the less 

complex one algorithm is, the more it is efficient and fast.  
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In our concern, we studied one of the problems which made spout out ink and saliva of our time : The 

Fibonacci’s sequence. More applications, in fields which we will not be able to enumerate all, for this 
sequence and its famous golden number.  The characteristic of this sequence is that it is of an quasi-

exponential growth and that an algorithm obeying scrupulously its definition becomes quickly 

ineffective and excessively slow as for the determination of the terms of sufficiently large row (from 
100). We presented three completely correct algorithms of decreasing complexities;  that is to say the 

first is more complex than the second and the latter more complex than the third. The first algorithm 

named Fib1 is of an exponential complexity and is too slow so that only Providence knows if the 
world will still exist to calculate the 200th term of the sequence here studied. The second is of a 

polynomial complexity and calculates 200th term in a time much more reasonable than its 

predecessor.   

The object of our study is to present a much better algorithm than the two above-mentioned ones.  It is 
obvious that the numbers of Fibonacci’s sequence being for the majority too large, it is advisable to 

determine them  using a computer. With this intention, we presented not only these algorithms but 

also the correspondents programs PASCAL. The Fib3 algorithm is not only fast but its programming 
is of an astonishing facility.  With the opposite of its predecessors which are all recursive, it has a 

linear and very simple structure thus by far the least complex, better and indicated to solve our 

problem.   
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