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Abstract: In this paper, we present a mathematical model of diabetes mellitus, which is a metabolic 
disease concerned with the regulation process of glucose in the body by the pancreatic insulin. This study 
presents variations of Glucose and Insulin verses time with different parameter values under different 
conditions. The phase plane diagrams also illustrated for different values of partial variations coefficients.  
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1. INTRODUCTION 
Mathematical modeling basically consists of translating real world problem into mathematical 
language, solving the mathematical problem [1]. Diabetes is a syndrome of metabolism which is 
characterized by too much sugar in the blood. Because of the lack of insulin, the patient’s body is 
unable to burn off all its sugar, starches and carbohydrates.  Insulin is the key hormone involved 
in the storage and controlled release within the body of the chemical energy available from the 
food.  Blood glucose levels are closely regulated in heath and rarely stay outside range of 3.5-8.0 
m mol/liter, despite its varying demand during food intake, fasting and exercise.  At low insulin 
levels, glucose production is maximal and utilization is minimal, at high levels the situation is 
reversed [2].Among the earliest mathematical models, the simplified model proposed by 
Ackerman et al [3] and its modifications Ceresa et al[4], Norwich K.H [5] have been successful in 
describing the mathematical relation between the glucose and insulin in plasma. The glucose 
concentration (g) and insulin concentration (h) are difference from the corresponding fasting 
levels respectively which are consider in the basic equations by Gita Subba Rao [6].  

2. NOTATIONS APPLIED 
 g = Deviation of glucose level from its fasting values 

 h = Deviation of insulin level from its fasting values 

 ( 1,2,3, 4)im i = = Positive constants representing the partial variation coefficients of production 
and secretion of glucose and insulin. 

,α β  = Roots of auxiliary equation. 

Basic Equations: Governing the variation rates of glucose and insulin 
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with the initial conditions g (0)= g0 and  h(0)= h0              (2)
 Eliminating h (t), we get the differential equation for g (t)

 

( )2
1 4 1 4 2 3( ) ( ) 0D m m D m m m m g t⎡ ⎤+ + + + =⎣ ⎦                            (3)

 
The auxiliary equation of (3) is  
 

( )2
1 4 1 4 2 3( ) 0m m m m m m m m+ + + + =

                                                   (4) 
the roots of which are 
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The following cases would arise 
Case (i):    
If   ( )2

1 4 2 34m m m m− >   

In this case roots ( ),α β  are real and distinct. The distribution of glucose and insulin are 

( ) t tg t A e B eα β= +                         (6)         
and                               
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Where A and B are constants chosen such that (6) and (7) satisfying the initial conditions 
 

0 2 0 1( )h m g mA β
α β
+ +

= −
−

 

   and   

0 2 0 1
0

( )h m g mB g β
α β
+ +

= +
−

 

Substituting these values A and B in the equations (6) and (7), we get variations of glucose and 
insulin 
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Since α and β  are both negative, g (t) 0→  and h (t) 0→  as t →∞  

The variations of glucose (g) and insulin (h) verses time (t) for the initial values as follows 

For the initial values g (0) =75 and h (0) = 100 are illustrated in figure1 and 2 
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Case (i): 
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For different constant values of m1, m2, m3 and m4, trajectories g (glucose) verses h (insulin) for 

the initial values g (0) =75, h (0) = 100 illustrated through Fig 8 to Fig 9 
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Fig8. m1= .018, m2= .002, m3=.105,m4=.03            Fig9. m1= .0001, m2= .5140,m3=.9,  m4=.006

 Fig 8 explains the rise and fall of insulin as glucose increases. This shows the rise and fall of 

insulin as glucose increases. 

Fig 9 illustrates the orbits around the equilibrium points for the values m1= .0001, m2= .5140,    

m3=.9, m4=.006 exhibiting the prolonged chronic state of disease. 
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