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Abstract: In this paper we deal with the study of the traffic flow model that is governed by two hyperbolic 
equations. By analysing the equations we obtain two real and distinct eigen values which enables us to 
determine the wave structure of the possible solution to the Riemann problem set up. We then obtain the 
numerical solution to the Riemann problem that we set up using the Godunov scheme and the relaxation 
scheme. Finally, we compare the results obtained from these two schemes graphically and explain in 
details. 
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1. INTRODUCTION 
Eigenvalues physically represent speeds of propagation of information. Depending on the initial 
data the eigenvalues may represent shock and rarefaction waves. A shock wave commonly known 
as shock is a type of propagating disturbance that is characterized by an abrupt but nearly 
discontinuous change in characteristic of the medium. Across a shock there is always an 
extremely rapid rise in pressure, temperature and density of the flow. 

Weak solution to an ordinary or partial differential equation is a function for which the derivatives 
may not all exist but which is nonetheless deemed to satisfy the equation in some precisely 
defined sense, Leveque4. 

A Riemann problem consists of equations together with the discontinuous initial data. Using local 
relaxation approximation Shi Jin et al5. constructed a linear hyperbolic system with a stiff lower 
order term that approximates the original system with a small dissipative correction. The main 
feature of this class of schemes was its simplicity and generality since it used neither Riemann 
solvers spatially nor non-linear systems of algebraic equations solvers temporally, yet it could 
achieve high order accuracy and picked up the right weak solutions. Also Godunov proposed a 
way to make use of the characteristic information within the framework of a conservative method 
by suggesting solving the Riemann problems forward in time and the solutions were easy to 
compute as well as gave substantial information about the characteristic structure and lead to 
conservation methods since they were themselves exact solutions of the conservation laws and 
hence conservative, Leveque4. 

2. MATHEMATICAL FORMULATION OF THE TRAFFIC FLOW EQUATIONS 
Using the conservative form of the AW-Rascle model we set up the Riemann problem (2.1) with 
piecewise constant initial data (2.2) 

0)( =+ xt UFU               (2.1) 

With initial conditions   
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The general solution of the Riemann problem includes a 1-wave connecting to the left state to 
an intermediate state (to be defined) and a 2-wave connecting this intermediate state to the 
right state . Since the 1-waves can either be shocks or rarefaction waves there will be the 
following types of solutions: 

LU

*U

RU

 

• 1-shock of speed S1, connecting  to an intermediate state  followed by a 2-contact 
discontinuity connecting  to the right state . 

LU *U

*U RU

 

• 1-rarefaction wave, connecting  to an intermediate state U  followed by a 2-contact 
discontinuity connecting U  to the right stateU . 

LU *

)( *1** LLL Suu −=− ρρρρ

* R

The shock speed S1 can either be less than zero or greater than zero. To determine the 
intermediate state we need to compute the Riemann invariants in the sense of Lax and use the i-
Lax curves to represent the solution of our preferred eigen structure, for i=1,2 Kimathi et al.3. 
Thus to determine the i-Lax curves, we arbitrary choose the situation where a given left state U
can be connected to an arbitrary stateU on the right by a 1-shock of speed S1. Thus for any 
discontinuity of speed S1 to satisfy the Rankine-Hugoniot condition we write: 

L
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             (2.3) 

Where on eliminating S1 and simplifying we have: 
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And since stateU is arbitrary the i-Lax curve passing throughU are obtained from equation 
(2.4) in terms of the primitive variables as Kimathi et al.3 
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Similarly, the 2-Lax curves are obtained by considering the Riemann invariants 

ρρ  

Now stating the Riemann invariants and associated with the respective characteristics 1W 2W 1λ
and 2λ  we have: 

uWpuW =+= 21 )(ρ     

3. NUMERICAL SOLUTIONS 
3.1. Relaxation Scheme 

Let’s consider systems of conservation laws in one dimension (2.1). 

Now introducing the relaxation system corresponding to the above equation, we have 
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AThe matrix is a positive diagonal matrix to be chosen. 

For  sufficiently small, it is expected that by solving (3.1) properly, one can obtain good 
approximations to the original conservation laws 

The positive constant a need satisfy: Shi J. et al. 5  
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For the relaxation system (3.1), the initial data is: 

 

Now introducing the spatial grid x  with mesh width =j
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 while the discrete time 

level t  with time step  for n=0, 1, 2. t−

A spatial discretization to equation (3.1) in conservation form can be written as: 
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Where the averaged quantity Fj is defined by 
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The relaxation system 3.1 has two characteristic variables, see Shi J. et al. 5  
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2,1, =± puAv pp              (3.3) 

That travel with the frozen characteristic speeds A± respectively. 
For better accuracy we use a second-order scheme that is the Van Leer’s MUSCL scheme, see 
Van Leer7. 

Applying this scheme to the pth component that is equation 3.3, gives 
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Where jσ  is the slope of ppp uav ±  on the j-th cell which we define using Sweby’s notation, 

see Sweby6 . 
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Where φ  is a slope-limiter function given as, Van Leer7 
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Solving equations 3.4 for 
2

1+j
u  and 
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Applying 3.5 in 3.2 we have, 
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Where  is the p-th component of the flux vector?  

Since the one dimensional systems of equation 3.1 has two eigen values u ρ′+  we 
take  
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Now, to obtain the time discretization for the relaxation scheme we use a second-order TVD 
Runge-Kutta splitting scheme which was introduced by Jin, Shi J. et al. 5  

Second-order TVD Runge-Kutta splitting scheme to the time derivative in 3.6, yields 
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3.2. Godunov Scheme 

Considering the Riemann problem, equation 2.1, with: 

Initial condition:  
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x .In order to admit discontinuous solution, we must use 

one of the integral forms of the conservation laws Toro1, that is, 
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piecewise constant distribution of the data. This is by defining cell averages which produces the 
desired piecewise constant distribution, that is, 
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The time step  must be chosen sufficiently small, to avoid wave interactions within a cell. 
Thus; 

tΔ
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≤Δ                 (3.9) 

Where is the maximum velocity present throughout the domain at time t   nSmax
n

Equation (3.9) allows the interaction of waves from the neighboring Riemann problem during the 
time step provided the interaction is entirely contained within a mesh cell. 

The integrand in (3.8) is an exact solution to the conservation laws and thus applying the integral 
form to the control volume we can show that 
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Thus using equation 3.7, Godunov method can be written in conservation form as 
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With the inter cell numerical flux given by  
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4. SIMULATION 
4.1. Relaxation Scheme 

We simulate the AW-Rascle type traffic model equation 2.1 by choosing the following form of 

the speed adaptation coefficient, Kimathi et al3, )
1

ln()(
ρ
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., where  

Now we investigate two traffic flow scenarios that lead to two solutions of interest namely a 1-
shock wave followed by a 2-contact and a 1-rarefaction followed by a 2-contact.  

Let the traffic under consideration be along the x-axis and beginning at and ending at
with traffic street lights at =x . Let the direction of flow of traffic be in the direction of 

increasing x along the axis. When the light red goes on, the vehicles approaching the street light 
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decrease their velocity which as a result increases the density of the vehicles and thus causing 
shock wave. 

In the first scenario we consider the initial conditions, 
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1.0,6.0 == RR uρ
95.0,6.0 == LL uρ

                                                (4.1) 

This data gives rise to a 1-shock wave followed by a 2-contact discontinuity as shown by fig 
1.1(a) and 1.1(b). Note that there is an abrupt change in color in fig 1.1(b), check the color bar, 
due to the abrupt change in density as shown in fig 1.1(a). Also in fig 1.2 we show the velocity 
profile at the same final computational time obtained using the initial data (4.1).  

 
Fig1.1(a). Density profile and fig 1.1(b): Distance-time graph for the density profile for Relaxation scheme 
solution to the Riemann problem; 

 
Fig1.2. Velocity profile for Relaxation scheme solution to the Riemann problem; 

In the second case we consider the initial conditions, 
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95.0,6.0 == RR uρ
1.0,6.0 == LL uρ

                                                (4.2) 

This data gives rise to a 1-Rarefaction wave followed by a contact discontinuity as shown by fig 
1.3(a) and 1.3(b). Fig 1.4 shows the velocity profile at the same final time T=10 obtained using 
the initial data (4.2) 

 
Fig1.3(a). Density profile and Fig 1.3(b): Distance-time graph for the Density profile for Relaxation 
scheme solution to the Riemann problem; 

 
Fig1.4. Velocity profile for Relaxation scheme solution to the Riemann problem; 
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4.2. Godunov Scheme  

Similarly, to visualize the features of the Godunov scheme we simulate the AW-Rascle type 
traffic model equations.  

In first scenario we consider the initial conditions (4.1), which give rise to a 1-Shock wave 
followed by a 2-contact discontinuity as shown in fig 1.5 (a)  and 1.5 (b) for the density and 
velocity profiles respectively. 

 
Fig1.5(a). Density profile for Godunov scheme solution to the Riemann problem; 
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Fig1.5(b). Velocity profile for Godunov scheme solution to the Riemann problem; 

In the second scenario we consider the initial conditions (4.2), which give rise to a 1-Rarefaction 
wave followed by a contact discontinuity as shown in fig 1.6 (a)  and 1.6 (b) for the density and 
velocity profiles respectively. 

 
Fig 1.6 (a). Density profile for Godunov scheme solution to the Riemann problem 
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Fig 1.6 (b). Velocity profile for Godunov scheme solution to the Riemann problem 

5. COMPARISON 
Having considered the velocity and density profiles for the two schemes using the initial 
conditions 4.1 and 4.2, we now present a comparison for the two schemes as shown in the fig 1.7 
(a) and 1.7 (b) below for the first case and 1.8 (a) and 1.8 (b) for the second case. 

 
Fig 1.7 (a.). Density profile comparison for 1-Shock followed by 2-Contact 

 
Fig 1.7 (b). Velocity profile comparison for 1-Shock followed by 2-Contact 
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Fig 1.8 (a). Density profile comparison for 1-Rarefaction followed by 2-Contact 

 
Fig 1.8 (b). Velocity profile comparison for 1-Rarefaction followed by 2-Contact 

6. CONCLUSION 
From the graphs above it is noted that the relaxation scheme performs equally better as the 
Godunov scheme. Thus it appears to be more promising and a good alternative to the Godunov 
scheme because of its simplicity. 

Due to insufficient time the authors of this paper decided to consider both numerical schemes that 
is Godunov scheme and relaxation schemes and thus the authors recommends for comparison of 
the schemes with the exact solution to check their accuracy so as to show which scheme is more 
accurate than the other in terms of approximating the exact solutions. 
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