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1. INTRODUCTION 

The logarithmic integral li( ), see Abramowitz and Stegun [1] is defined by 

li( )=  

      =  

where PV denotes the Cauchy principal value of the integral, we will use 

li( )= PV  

for all values of  

The logarithmic integral li( ) was generalized to 

li(
 r
)=PV  

and its associated functions li+( ) and li_( ) are defined by 

li+( )= H(x) li( ), li-( )= H(- ) li( ) 

where H( ) denotes Heaviside's function. 

It follows that 

li(
 r
)= PV                                                          (1) 

see [6]. The distribution 
 r-1

 ln
-1

 |  | is then defined by 

 r-1
ln

-1
|  |= [li(

 r
)]' 

and its associated distributions ln
-1

x+ and  ln
-1

 - are defined by 
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ln
-1

 + = H( )
 r-1

ln
-1

|  |= [li+(
 r
)]', 

 ln
-1

 -  = H(- )
 r-1

ln
-1

|  |= [li-(
 r
)]', 

for r = 1, 2,…. 

The classical definition of the convolution of two functions f and g is as follows: 

Definition1. Let f and g be functions. Then the convolution f*g is defined by 

(f*g)( )=  

for all points x for which the integral exist. 

It follows from Definition 1 that if f * g exists then g*f exists and 

f*g= g*f.                   (2) 

Furthermore, if (f*g )' and f*g' (or f'*g) exist, then 

(f*g )' = f*g' (or f'*g)                 (3) 

Gel'fand and Shilov [9] extended Definition 1 to define the convolution f*g of two distributions f 

and g in D', the space of infinitely differentiable functions with compact support. 

Definition2. Let f and g be distributions in D'. Then the convolution f*g is defined by the 
equation 

=  

for every  in D, provided f and g satisfy either of the conditions 

(a)  either f or g has bounded support, 

(b)  the supports of f and g are bounded on the same side. 

        Note that if f and g are locally summable functions satisfying either of the above conditions 

and the classical convolution f*g exists, then it is in agreement with Definition 1.1. 

The commutative neutrix convolution product is defined in [4] and it works for a large class of 

pairs of distributions. In that definition, unit-sequences of functions in D are used which allows 

one to approximate a given distribution by a sequence of distributions of bounded support. 

To recall the definition of the commutative neutrix convolution we first let τ be a function in D, 
see [10], satisfying the the following properties: 

i. τ( )= τ(- ), 

ii. 0 ≤ τ( ) ≤ 1, 

iii. τ( )= 1 for |  | ≤ , 

iv. τ( )= 0 for |  | ≥ 1. 

The function τn is now defined by 

τn( )=  

for n = 1, 2,…. 

We have the following definition of the commutative neutrix convolution product. 

Definition3. Let f and g be distributions in D' and let fn = fτn and gn = gτn for n = 1, 2,…. Then the 

commutative neutrix convolution product f g is defined as the neutrix limit of the sequence 

{fn*gn}n€N, provided the limit h exists in the sense that 

=  

for every  in D, where N is the neutrix, see van der Corput [2], having domain N' of positive 

integers and range N'' the real numbers, with negligible functions finite linear sums of the 
functions 
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n
λ
ln

r-1
n, ln

r
n: λ>0, r=1, 2, … 

and all functions which converge to zero in the normal sense as n tend to infinity. 

Note that in this definition, the convolution product fn * gn is in the sense of Definition 1.1, the 

distributions fn and gn having bounded support since the support of τn is contained in the interval 

[-n – n
-n
, n + n

-n
]. This neutrix convolution product is also commutative. 

It is obvious that any results proved with the original definition hold with the new definition. The 

following theorems, proved in [4] therefore hold, the first showing that the commutative neutrix 

convolution product is a generalization of the convolution product. Therefore the idea of a neutrix 
lies in neglecting certain numerical sequences diverging to ±∞, which makes a wider the class of 

pairs of distributions f and g for which the product exists. It should be noted that, in general, the 

definition of a commutative neutrix convolution product depends on the choice of the sequence τn 
as well as the set of negligible sequences. 

Theorem1. Let f and g be distributions in D', satisfying either condition (a) or condition (b) of 

Gel'fand and Shilov's definition. Then the commutative neutrix convolution product f g exists 

and 

f g = f*g. 

Note however that (f g)' is not necessarily equal to f' g, but we do have the following theorem 

proved in [5]. 

Theorem2. Let f and g be distributions in D' and suppose that commutative neutrix convolution 

product f g exists. If  exists and equals (h, ) for every  in D, then f'

g exists and (f g)' = f' g + h. 

In the following, we need to extend our set of negligible functions to include finite linear sums of 

the functions n
s
li(n

r
) and n

s
 ln

-r
 n, (n > 1) for s = 0, 1, 2,…. and r = 1, 2,…. 

2. MAIN RESULTS 

The following were proved in [6] for r = 0, 1, 2,…., and s = 1, 2,…. 

li+(
 s
)*  =                                                    (4) 

=                                (5) 

                                        (6) 

,                            (7) 

                             (8) 

Now we prove the following results. 

Theorem 3 The neutrix convolutions li+(
 s
)  

 r
 exists and 

li+(
 s
)  

 r
 = 0,                   (9) 

for r = 0, 1, 2,…, and s = 1, 2,…. 

Proof. Put [li+(
 s
)]n = li+(

 s
)τn( ) and [

 r
]n = 

 r
τn( ) for n = 1, 2,…. Since these functions have 

compact support, the convolution product [li+(
 s
)]n*[

 r
]n exists by definition 1 and so 

[li+(
 s
)]n * [

 r
]n=  

=  

=I1+I2.                               (10) 

If 0≤  ≤ n, then we have 
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I1 =  

    =PV  

    = PV  

    =PV  

    = . 

Using (7) and (8) we get, 

.                                                                                (11)  

Next, if –n ≤  ≤ 0, we have 

I1 =  

   =  

where 

 

=PV  

     =PV  

                               =  

     - . 

Using (7) and (8), we have 

.                                    (12) 

Furthermore by using (6), we get  

                        (13) 

We have from equations (11), (12) and (13) that 

 I1 =0.                (14) 

Furthermore, for every fixed x we have 

=                               (15) 

Now equation (9) follows from equations (10), (14) and (15), proving the theorem. 

Corolary1. The neutrix convolution li_(
 s
)  

r
 exists and 

li_(
 s
)

 r
 =0,                                                                                  (16) 

for r = 0, 1, 2,… and s = 1, 2,…. 

Proof. Equation (16) follows immediately on replacing x by -x in equation(9). 

Corolary2. The neutrix convolution li(
 s
)

 r
 exists and 

li(
 s
)

 r
 = 0,                (17) 

for r = 0, 1, 2,…, and s = 1, 2,…. 
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Proof. Equation (17) follows on adding equation (9) and (16). 

Corolary3. The neutrix convolutions li+(
 s
)  x

r
- and li-(

 s
)  

 r
+  exist and 

li+(
 s
)  

 r
- =                                            (18) 

li+(
 s
)  

 r
+ =                                            (19) 

for r = 0, 1, 2,…, and s = 1, 2,…. 

Proof. Equation (18) follows from (4 ) and (9 ) by noting that 

li+(
 s
)  

 r
 = li+(

 s
)  

 r
+ + (-1)

r
 li+(

 s
)  

 r
. 

Equation (19) follows by replacing x by -x in equation (18). 

Theorem4. The commutative neutrix convolution 
 s-1

+ ln
-1

  + 
 r
 exists and 

=0,                                          (20) 

for r = 0, 1, 2,… and s = 1, 2,…. 

Proof. Differentiating equation (9) and applying Theorem 2 we get 

=                                            (21) 

where, on integration by parts we have 

[li+(
 s
) ]*(x

r
)n =  

=-li(n
s
)(x-n)

r
τn(x-t) -  

+ r  

+                                 (22) 

Noting that τn(  - n) is either 0 or 1 for large enough n, so 

                                   (23) 

Also, it is clear that 

                                     (24) 

                                                      (25) 

Now τ'n (  - t) = 0 for large enough n and x ≠ 0, so 

 

If  = 0, then 

 =  

                                       (26) 

This implies that 

                                                             (27) 

and now equation (20) follows from the equations (22) to (27). 
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Corolary 4. The neutrix convolution ( )    exists and 

 s-1
( )  

 r
 =0,               (28) 

for r = 0, 1, 2, …, and s = 1, 2,…. 

Proof. Equations (28) follows by replacing  by -  in equations (20). 

Corolary5. The neutrix convolution 
 s-1

 ln
-1

 |  |  
 r
 exists and 

 s-1
ln

-1
|  |  

 r
 =0,               (29) 

for r = 0, 1, 2,…, and s = 1, 2,…. 

Proof. Equation (29) follows by adding equations (20) and (28). 

Corolary6. The neutrix convolutions  and exist and 

=                            (30) 

 =                                     (31) 

for r = 0, 1, 2,… and s = 1, 2,…. 

Proof. Since 

 = ,  

equation (30) follows from (5) and (20). Equation (31) follows by replacing  by –  in equation 

(30).   
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