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Abstract: The concept of 2-norm is two-dimensional analogy of the concept of norm and is given by S.
Gahler in 1965. So, the 2-norm axioms consist an axiom which is analogy of triangle inequality into
normed space, and is called as parallelepiped inequality. In this paper are proved a few inequalities, which
in fact are consequences of parallelepiped inequality and are analogy of appropriate inequalities into
normed space.
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1. INTRODUCTION

Let L be a real vector space with dimension greater than 1 and, ||-,-|| be a real function defined on
L x L which satisfies the following:

a) Ix,y|>0, forall x,yeL and ||x,y|=0 if and only if the set {x, y} is linearly dependent;
b) X ylI=ly. x|, forall x,yeL;

¢) llax,ylH el %y, forall x,yeL and for each « e R,

d) || x+vy,z|<lxz||+|y,z], forall x,y,zeL.

Function ||-,-|| is called as 2-norm of L, and (L,||-,-|[) is called as vector 2-normed space ([7]).

Let n>1 be a positive integer, L be a real vector space, dimL>n and (,-|-) be a real function
on LxLxL such that:

i)  (X,x]y)=0,forall x,yelL and (x,x|y)=0 ifand only if a and b are linearly dependent;
i) (x,y|2)=(y,x|z), forall x,y,zeL.,

i) (xx[y)=(y,y[x), forall x,yeL;
iv) (ax,y|z)=a(x,y|z), forall x,y,zeL. and for each « R ; and
V) (X+X,Y|Z)=(Xy|z)+(X,y|2), forall x;,x,y,zeL.

Function (-,-]-) is called as 2-inner product, and (L,(-,-|-)) is called as 2-pre-Hilbert space ([6]).
Example 1. Let (L,(,,)) be a real pre-Hilbert space. Then,

(X,x) (x,2)
(x,2) (z,2)

1/2

I zll=

for each x,ze L, defines a so called standard 2-norm. Further, if L= R3 with ordinary inner
product and the vectors x,y,ze R® are not pairwise linearly dependent then || x,z|, || vy,z]|,
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|| x+y,z| are equal to the areas of the parallelograms constructed with the vectors x and z,y
and z,x+y and z, respectively. Inequality

Ix+y.zl<lxzl+y.z |, (1)

is equivalent to the

2

0<1-cos a—0032,8—0052;/+Zcosacos,Bcos;/, 2

for £(x,y)=a, £(y,z)=p and £(z,x)=y. Geometrical interpretation of the inequality (1)
states following: the sum of the areas of two adjacent faces is greater or equal to the area of
diagonal intersection which is placed between these two faces. So, the inequality (1) is the
analogy of the triangle inequality into normed space and is called as parallelepiped inequality.

2. PARALLELEPIPED INEQUALITY

Lemma 1. Let (L,|-,-||) bea2-normed spaceand z,x; €L, i=12,..,n.

a)lf o>0,i=12,...,n, then

logXq +aoXo +...+ i Xn, Z IS g || X, Z ||+ || X0, Z ||+ + 0 || X, 2] - (3)
0) If >0 and ¢; <0, for i =2,3,...,n, then

logXq +ooXo +...+ i Xn, Z |2 o | X, Z ||+ || X0, Z ||+ + 0 || X, 2|l - (3)

Proof. a) Directly follows by the inequality (1), axiom c¢) of 2-norm and the principle of
mathematical induction.
6) The inequality (3) implies the following
logxq, z |l egXq + apXo +...+ ap Xy — (X +...+ Xy ), Z ||
Jogxg + Xy +...+apXn, Z ||+ 1| —(coXo +...+ %), Z ||
logxg +apXo +.o+ g Xn, Z || +H(=a) || X0, Z || +... + (=) | X, Z |
which is equivalent to the inequality (3°).

Remark 1. Substituting ¢ =1,i=1,2,...,n into the inequality (3), we get that for each z,x; €L,
i =12,...,n the following inequality is satisfied

X+ X2 4.4 X, Z [ X, 2 [+ T %2, 2|+ 4 [, 2 (4)

Lemma 2. Let (L,||--])) bea 2-normed spaceand z,x; eL, i=12,...,n. Then

%+ X+ 4 Xn, ZIH Xz [+ X2, Z |+ X, 21 (5)
if and only if
eaxa + Xy +... +anXn, ZlF g [ X, Z M1+ | X2, 2 [+ + 0 [ X9 2 (6)

for each ¢; >0,i=12,...,n.
Proof. If the equality (6) is satisfied for each ¢; >0,i=12,...,n, then letting ¢ =1,1=12,...,n
we get the equality (5).

Conversely, let (5) be satisfied and let ¢; >0,i=12,...,n. Without any restriction of generality

we may take oy =1rl1ia<>§] ¢ . Then the equality (5) and lemma 1 imply the following
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Zal ||X,,Z||—0!1_Z||X|,Z||—'Z(a1 ai) 1%,z

i=1 =1
= || zxiiz||_2(0‘1_ai)||xiiz||
i-1 i1
n n
g 2 %zl =11 2 (g — )%, 2|
i1 i1
n n
o 2% — 2 (on — )%, 2|
i-1 -1
n
= X %,z
i1

Finally, the last inequality and the inequality (3) imply the inequality (6).
Let X,y eL be non-zero elements and V(x,y) denotes a subspace of L generated by the vectors

x and y. The 2-normed space (L,||--[) is called as strictly convex if || x,z [I=]| y,z [<| 5%z = 1

and zeV(x,y), for x,y,zeL, imply x=y ([3]). The condition for which the equwalent
equalities (5) and (6) are satisfied in strictly convex space is given by lemma 3. The following
theorem holds true:

Theorem 2([4]). The 2-normed space (L,||-,-|) 1is strictly convex if and only if
IX+y,z|=lIxz||+|y,z] and zgV(X,y), for X,y,zeL imply y=ax for some «>0.

Lemma 3. Let (L,||--|) be a strictly convex 2-normed space and the vectors z,x €L,
i=1,2,...,n are such that the sets {x;,z},i=12,...,n are linearly independent. Then the equalities
(5) and (6) are equivalent with the equalities

X __ X _ __*n )

Izl lxg 2l Ixqzll

Proof. If the equalities (7) are satisfied, then for each ¢; > 0,1 =1,2,...,n holds true the following

||Za|xl,z|| ||Za| ||x,,z||”X Z||,z|| IIZa. ||x.,z||||x o2l

i=1

[Ixi.. 2

:n(_z i K2 (2 T 2 Sl 2
i=1 =1

i.e. the equality (6) holds true.

Conversely, let (5) hold. For each i=2,3,...,n is true that | X;+X,z|[|<| X, z[+] X%, 2]
Furthermore,

n n
I+ %z [ 2 Xzl =10 2 %oz l= 2 e zl=1 X % 2

k=1 k=L, k=1 k=L,

ZIIXk zl- X Ixozl=lx zl+ 1%, 2

k=1,

SO || Xy + X, Z =l X, z ||+ 11 X,z ||. But, L is strictly convex, and using facts stated in Theorem 2

X0, 2]l

, for
l1%;, Il

follows Xx; =X, for i=2,3,..,n. So, |[|X,z|F¢ ||%,z ||, for i=2,3,..,n, i.e. o=

i=2,3..,n. Hence, ,for i=2,3,..,n, i.e. the equalities (7) are satisfied.
||X1 zl~ IIX. ZII
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Theorem 3. Let (L,||-,-|)) bea 2-normed space. For each Xx,y,z e L the followings are satisfied

Hxzll=ly.zllilx+y. zl[+lIx=y,z[|[ =%z = [l y;z [[€ min{|| x + y, z |, x— Y,z [[} 8)
and
Hxzl=ly,zllxzll+ 1y, zII=[Ix+y, zl[- [ x=y,z]]. C))

Proof. The parallelepiped inequality implies

Ix+y.zll+lx-y.zl-Ixzl -l y.zll x-y.z]

Ix+y.zll+lIx=y, zll=lIxzll= -y, zl<ll x+ y, ]|
So,

Ix+y.zll+IIx=y.zll=lIxzl=lly.z < min{[| x=y,z[.| x +y.z [},

i.e. the right side inequality of (8) is satisfied.
Further, again using the parallelepiped inequality we get

2, zl= x+y+(x=y).zll<| x+y. z[[+] x -y, z].

2|y, zlHIx+y—=(x=y). zl<llx+y.z ||+ x=y,z],
So,
2max{| .z [Llly. z[}<llx+y.z[[+]Ix=y.z]. (10)
On the other hand
I zll+ 1y, zIl+ % zll=1y,z[lF 2max{]| x, z [y, z [} - (11)
Finally, the equality (11) and inequality (10) imply the left side inequality of (8).
Again, from the parallelepiped inequality we get

Ix+y.zl<llx+y—-(x=y).zl+lIx=y.z|= 2]y, z[|+[I x=y. z],
Iy=xzl<lly=x=(x+y)zll+lIx+y.z|=2[Ix,z[[+] x+y.z].
So,
lIx+y.zll=lIx=y.z[[l<2min{||x,z LIl y, z [} (12)
On the other hand
I zll+ 1y, zII=1lIxzll =]y, z = 2min{] x, z |l 'y, z[[}- (13)

Finally, the equality (13) and the inequality(12) imply the inequality (9).
3. THE SECOND TYPE OF PARALLELEPIPED INEQUALITY

Firstly, we will discuss the convex functions defined on a vector space L. Let L be a vector
space and C < X be a convex subset of X . The function f:C —R is convex if for all x,yeC

and for each «a<[0,1] the inequality f(ax+(-a)y)<af(X)+(1—-a)f(y) is satisfied.
Furthermore, the function f:C —R is convex if and only if for each x; eC, i=12,...,n and

n
for each ¢; >0, i=1,2,...,n, such that > & =1, the Jensen inequality holds true, i.e.
i=1

H(San) < Y aif (%), (14)

i=1 i=1
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Lemma 4. If (L,||,,-|)) be a 2-normed space, then for each zeL and for each p>1 the function
fp,z:L—>R definedas f,(x)=[x,z||°, xeL is convex.

Proof. Let zeL and p>1. The function f(t)=tP, p>1 is convex on [0,«). So, for each

n
t;>0,i=12,..,n and for each ¢; >0, i=1,2,...,n, Y ¢ =1 is true following inequality
i=1

(_il )P < Zl aitp (15

Further, the parallelepiped inequality and the inequality (15) for t; =|| x;,z ||, imply

n n n
1Y eix,zIP<(X e l1%, 2P < 3 o Il %, 2P
i-1 i-1 i-1

n

for each x;elL, i=12,..,n and for each ¢; 20, i=12,..,n such that > o =1, i.e. for the
i=1

function f, ,, Jensen inequality is satisfied. That means, the stated function is convex.

Theorem 4. Let (L,||-,-|) be a 2-normed space. For all z,x,...,x, €L, ¢ >0,i=12,..,n and
p>1 the following inequality holds true

Xy+Xp %, 21° _ Ixg.20° IIXz,ZIIpJr +|IXn,Z|Ip

< . 16
(q+ay+.tay)Pt T Pt o™ P (16)
Proof. Let ¢ >0,i=12,...,.n and p>1. Then
n 1 n
F=0i(X ) >0mn =1
i=1 i=1
According to Lemma 4, for all z,y; eL,i=12,...,n is true that
Iy + Y2+t i Yn 2 IP< By, z 1P +6 1 y2, 2 |P + 4 1 g, 2 IIP
i.e. holds true
JZ|IP
leantagd bt < oy | yy 2P oy || Yo, 2P+t Il Y 2P (17)
(al+a2+...+an)
Finally, letting vy; :g i=12,...,n inthe equality (17), we get the inequality (16).
1
Remark 2. Letting n=2 in the inequality (16), we get the following
a+xp.2lP _ lxzll® | I%. 2l
< + , 18
(r+a)P™* o™ af™ o

Moreover, if oq = ap, =1 then follows
-1
1%+ %2, 2 [IP< 2P (%, 1P + 11 %2, 2 [P) .

Now, letting p=2 into the last inequality, we get other form of the parallelepiped inequality
which is called as the second type of parallelepiped inequality.

1% + %o, 2 [F< 2(1l %, 2 I + 1 %0, 2 |) . (19)
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Moreover, letting p=2, x; =ayj, X, =by,, oq = aa? and oy = ,6’b2 in (18) we get the following
inequality, which in fact is more general second type parallelepiped inequality

leys+bys 21 _ Iyl | Iy2.21” (20)
aa’?+h? o B

Letting a=b=a = =1 we get the inequality (19).
Remark 3. Let (L,(-,-|-)) be a 2-pre-Hilbert space. Theorem 1 [2] proves

2 _ 2 2 2
llax+by, z]| +||ﬂb>< cay,z|” _ |Ixz| +I|y,ZI| , (1)
4 yo3 a B

forallx,y,zeL and forall a,beR, «, B3>0, y =aa®+ Bb%. But for all x,y,ze L and for all
abeR, a,4>0, 7 = aa? +ﬂb2 holds Wao. So, in the 2-pre-Hilbert space, the
equality (21) implies the inequality (20).

Let x,y,ze L, p=1 and consider the function g:[0,1] —» R defined by

g(t) =lltx+ (@1 -t)y,z||P, te[0,1].

The continuously of 2-norm implies the continuously of this function on [0,1]. The last in fact
means, the function is integrable on [0,1]. But, Lemma 4 imply

gt) =lltx+ @A-t)y,z||P<t]x,z||°P +@-t)||y,z|P, for each t[0,1].

So,

1 1 P P
i+ @-)y, 2P de< (el x, 2P +@-1)[) y,z[|P)dt = BAYAT (22)
0 0

Let t;,t, €[0,1] and A €[0,1]. Using Lemma 4 once again, we get

g2t + (1= tp) =l (A + (@ - Dtp)x + (1= - (1= D)y, [P
= (2t + (1= A)tp)x+ (AL -t) + L= A1)y, ||
=l A(tx + (L-ty) y) + (1= D(tax+ (1-t2) y), [P
< Allx+@-t)y, [P +(1- ) [[tox+L-t) y, z||P
=49(t) +(1-A)9(t2).

This means that the function g(t) is convex on [0,1]. Now, by Jensen integral inequality ([13],
p.p. 13, Theorem 1) we get

1 1
155% 2P J(x+ @- 1) y)dt, 2 ||P= g( [(tx+ @ 1) y)di)

1 1
< fg(tx+(@L-t)y)dt = f|[tx+(1-t)y,z|P dt.
0 0

The inequalities (22) and (23) in fact are generalization of the J. E. Pecari¢ and S. S. Dragomir
([13], p.p. 485 (5.10)) inequalities at 2-normed space and p>1. Finally, the above stated, i.e. the

inequalities (22) and (23), implies the following Lemma.

Lemma 5. Let (L,||-,-|)) be a 2-normed space. For all x,y,zeL and for each p>1 holds true
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1 p p
1552, 2P flox+@-1)y,z P de < AR, @4
0

Let X be a vector space, C be a convex subset of X, P, be a set of all non-negative n— tuples

n

(P, P2, Ppy) SOthat D pj =1, f:C—R isaconvex function, X =(xq,Xy,...,X,)€C, peP,
i=1

and

Jn<f,x,p>=_§lpif(xi>—f(%pixnzo, 25)

be a normalized Jensen functional. In paper [5], for functional (25), S.S. Dragomir gave an
elementary proof of the next Theorem about the bounds of normalized Jensen functional.

Theorem 5 [5]. If p,qePR,, qj >0, for each i =1,2,...,n then

3, (f, xq)max{p'}>J (f,%.p)=J,(f,xq) mln{g'} (26)

Using this S. S. Dragomir’s result, we will prove few inequalities into 2-normed space, which are
analogy of the corresponding inequalities at normed space.

Theorem 6. Let (L,||-,-]) be a 2-normed space. Then, for each p>1, and each ¢; >0,

n
i=12,..,n suchthat > aj=1 and each z,xq,...,x, € L, following holds true
i=1

1—
[ZII X, z|IP =P | Z Xk ZII'D]mr’:lX{Oq}> Zak 1%, 2 1Pl Zakxk z|P,

k=1 k=1 k=1 k=1 27)
1—

Z o 1%,z (1P~ | Z X Z||'D>[Z X,z P —n P Z X 2111 min {c;}

k=1 k=1 k=1 k=1

Proof. By Lemma 4, for each zeL and for each p>1 the function f,,:L—> R defined
by o, (X) =[x,z IP, xeL is convex. Now, the inequalities (27) are implied by Theorem 5, when
used on the function f, , for pj=¢;, i=12,..,nand ¢ =->, i=12,.

Consequence 1. Let (L,|--|) be a 2-normed space. Then for each p=>1and for all
Z,%1,.., Xy € L, such that the sets {x;,z},i=12,...,n are linearly independent, the following holds
true

Szl - nl‘puzx. 2P2S0%.21P 1—(2”X " ||z”X 2 1P1 min ;.2 3
i=1 i=1 =1= (28)

n n

-1 1- X; 1—
316,207~ (X )P IS i 2P mal g 2 2 3. 20— P ) X,z P
i=1 =1 =1 Isi=n i=1 i=1

n n
Proof. If p;>0,i=1..,n, >, pj>0and ¢ = pj( X pk)‘lzo,i =1,...,n, then
i=1 k=1

iai = En: pi(an p) L=
i-1 =1 k=1

Hence, using (27), we get
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[Z” Xj,Z ”p n*-P [ Z Xj,Z ”p] maX{p|}> Z Pi Il %, 2 ”p (Z Pi) 1—p | Z PiXi, Z ”

i=1 i=1 i=1 =1 i=1 (29)
Zp| |X|’Z||p (Z ) 1_p||zp|X|1Z”p>[Z||X|'Z”p nl—p”le IP,z] mm{pl}

-1 i=1 i=1 i=1 =1
Finally, when p; = i=12,...,n, the inequalities (29) imply (28).

IIX 2

Consequence 2. Let (L,||,-]) be a 2-normed space. Then for all z,x,...,x, €L, such that the
sets {xj,z},1=12,...,n are linearly independent, the following inequalities are satisfied

n . n n
=1 X mp z llmaxd{ll x, 2 3= X 1 xj,zI=11 X xj, 2
=1 Xzl 1<i<n j=1 j=1
(30)
ZHMJHHZXpNﬂnszxmlmmmﬂﬁlm
j=1
Proof. The inequalities (30) follow by the inequalities (28), for p=1.

Consequence 3. Let (L,||-,-|)) be a 2-normed space. For all x,y,ze L such that the sets {x,z}
and {y, z} are linearly independent, followings holds true

Ix+y, 2<%zl +1y, 21 ==+ g 2 D mindllx 2Ly, 2 1 (31)

|Iy Z’

Ix+y,z Izl %zl + 1y 2l =@ g+ g 2 D maxdlix z Ly, 213 (32)

|Iy z|’
Proof. The inequalities (30), when n=2 and X; =X, X, =y directly imply the inequalities (31)
and (32).

Consequence 4. Let (L,||-,-|)) be a 2-normed space. For all x,y,zeL such that the sets {x,z}
and {y, z} are linearly independent, holds true following

X y Ix+y,zll-lIx,zll-lly.zll|
+ z > , 33
ez * Ty 2 P mingi.iy.zp (33)

X y Ix+y,zll+H X, zlI-lly, zIl|
+ Y7k . 34
ez v 2 15 ey 2 (34)

Proof. For all positive real numbers a and b it holds 2min{a,b}—a—-b=—|a—b|, and further
using the inequality (31) we get the following

zlmindlix, z[LIy, z [} =l x+ y.z [+2min{l x,z LTy, 2 [F= 1 x.z =1y, 2]
=Ix+y.zll=lxzl=1y.zIll

I

which is equivalent to the inequality (34).

In the theorem below we will give the necessary and sufficient condition for the inequality (31)
and (32) to be transformed at equalities, when the space is strictly convex.

Theorem 7. Let (L,||-,-|]) be a strictly convex 2-normed space, and X, Y,z € L are such that the
sets {x,z} and {y,z} are linearly independent and || x,z||<| ¥,z ||. Then

— || =X+
Ix+y.zl+@- I+ a2 DIz Xzl + 1.2 (35)

if and only if exists « €(0,1) suchthat x=+ay.
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Proof. The parallelepiped inequality and || x,z ||<|| y,z || imply

xal . Izl
X+—ry+({1-
el iy Y

<zl +

[Ix.zl
lly.z

z||+(-

Y2l

[Ix,z]
lly.zl

Ix+y.z e

: o Iy zl
Ily | (36)

=%, 2| |-+ L z | +]l v, z|| - || X, z
Ixzll i+ 2+ .zl -z

=Ix.zl+1y.zll-(2- D%, z|l.

I Tl ™ Ily Z|I’

This means that the equality (35) holds if and only if the inequality (36) become an equality, i.e. if
and only if

Ix+ Bethy @2y z e Bl z )+l a-fe2by. 2. (37)

But, L is strictly convex, and using Lemma2 we get that the equality (37) is equivalent to the
following

Ll Ix.2|
Fya?  _ Goy)y
%] %] (38)

||X+||y Z||y Z” ||(1—m)Y.Z||

i.e. to the equality

x = (|32 + 1z || —1) Ixzl
s * 21Dy Y
Let
. gl
a=(lpa* wa 2Dy
Then x=ay . But, ||X,z|K|ly,z|,so 0<|e|<1.
Conversely, if x=ay, for 0 <]« |<1, then
X 4 Y _qyay Y
i v~ e
But, 1+% >0, so
a
JZ=1+ &
I+ a2 F L
i.e. the following is true
X . ¥ g x . ¥ Z y
v ik iy 2

The last equality is equivalent to the equality (38) and to the equality (37). Therefore, in (36)
apply the equality, i.e. is true the equality (35).

Remark 4. In the proof of Theorem 7, we actually proved the inequality (36). So, mentioned that
min{|| X,z ||,|| v,z |} =]| X, z||, in fact we proved the inequality (31) on some other way. Similarly,
using facts that max{|| x,z ||| y,z|}=|ly,z| and

z -+ y+ (-2, 2 il x+ v,z D) Tz

[Ix,zl

” yi ” ” ||X Z” ”y Z”!
=l x+y.zll+lly.zlI-lxzl,
we get another proof of the inequality (32).

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page 727



Risto Malceski & Katerina Anevska

4. CONCLUSION

In our previous considerations we have already proved few inequalities at 2-normed space, which
actually are generalizations of appropriate equalities at 2-normed space. Theorem 6 and
Consequences 1 and 2 generalize the inequalities which hold true at normed space, and are
already proved at [8], [9], [10], [11] and [12], and furthermore at [5] are proved applying the
functional (25) and are corrected at [1]. Naturally, raises questions of generalization to other
inequalities which hold true at normed space, and of generalization to previously reviewed
inequalities at n-normed space.
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