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Abstract: In this paper, we are interested in looking for Hopf bifurcation solutions for mathematical 

model of arterial and venous pressures during physical activity. The mathematical model is governed by a 

system of delay differential equations. The algorithm for determining the critical delays that are convenable 

for Hopf bifurcation is used. The illustrative example for a 30 years old woman is taken.  
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1. INTRODUCTION 

The human cardiovascular system is a transport system of the oxygen, carbon dioxide [1] and 

nutrients are carried by the blood from the various muscles and organs. The respiratory system is 
also a transport system of gases between the environment and the tissues [2, 3]. It acts to 

exchange oxygen which is very important as it is needed by various tissues in terms of 

metabolism with carbon dioxide produced by metabolic activities. Mathematical models have 

many applications in the control of the human body include epidemiology, immunology, 
physiology, cell mobility, the control of the cardiovascular and respiratory system. A very 

important discussion for human health is the control of the cardiovascular and respiratory system. 

The knowledge of this control mechanism is very helpful for improving diagnostics and treatment 
of diseases of this system. In terms of control function in cardiovascular system; the autonomic 

nervous system controls and regulates all activities. The heart rate is controlled by both systems 

(sympathetic and parasympathetic nervous systems) [4, 5]. If the sympathetic nervous system 
excites a particular organ, often parasympathetic nervous system inhibits it [6]. 

Since the 1950’s, the human cardio-respiratory system has been modeled using dynamical 

mathematical models. The compartmental theory has been used for developing the most of those 

mathematical models [4, 7, 8, 9, 10]. By setting a set of parameters to link the cycles of heart and 
respiration mechanism, the models of cardiovascular system and respiratory can be simply 

integrated. Mathematically, this control consists of solving optimal control problems. The 

equation of motion is the commonly accepted mathematical model of the respiratory system 
which provides the basis for the most clinically applied methods of respiratory mechanics 

analysis. S. Ganzert derives the equations for model identification in respiratory mechanics under 

conditions of mechanical ventilation [11]. This was the first application of an equation discovery 
technique to measured respiratory data from intensive care medicine. In 2007, S. Sepehris 

developed physical based model of human respiration, he modeled the slow deep breathing by 

tunnel diode oscillator [12]. The numerical simulation results and theoretical analysis on 

dynamics of cardiovascular- respiratory system and the abnormal cases were compared with the 
empirical reports to verify the validity of the proposed dynamic models [8].  It was noticed that 

the heart-lung interaction is inherently unstable, especially if certain heart-lung disease or injuries 

are present. For realistic contribution, the proposed models can be employed for controller 
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synthesis for medical equipments. They can be used also for determining the variation of 
trajectories of some determinant parameters of cardiovascular -respiratory system. The behavior 

of these parameters is provided by a qualitative study.  In 2007, a bicompartmental mathematical 

model for determining blood pressures response to cardiovascular and respiratory system has been 

designed [10]. Taking two delays we can deal with determining the Hopf bifurcation points of this 
model during physical activity where we consider three cases: Walking, Jogging, and Running 

fast. 

This paper is organised as follows. In section 2, we set mathematical model equations as well as 
equilibrium points. The section 3 deals with the asymptotic states and algorithm for determining 

the bifurcation points. In section 4 we present test results for a 30 years old woman during 

physical activity. The concluding remarks are presented in section 5. 

2. SETTING MATHEMATICAL MODEL EQUATIONS 

One of an important phenomena to human health is the control of the cardiovascular and 

respiratory system. The question that often arises is of determining heart rate and alveolar 
ventilation for controlling systemic arterial pressures to prevent cardiac accidents [12]. For a 

healthy subject, it is well known that heart rate and alveolar ventilation depend on he or she is 

trained or untrained. The models generally consist of solving control optimal problems of 

nonlinear differential equations with cumbersome terms, leading to unstable solutions.  An 
interesting global model has been proposed but it possesses unstable equilibrium states [4]. This 

model requires that we must, first, search stable equilibrium states and, secondly, compute the 

solution on an interval 0, T with small value of T for the initial state which is very closed to the 
equilibrium state. Such model doesn't permit to understand a long-term cardiovascular- 

respiratory system in the case of aerobic physical activities. In this section we would like to 

present a mathematical model for determining blood partial pressures with respect to heart rate 
and alveolar ventilation. The diagram of a three compartment is shown in the figure 1 where we 

consider the systemic arterial compartment ASC the systemic venous compartment VSC  

Based on the diagram presented in the figure 1 and physiology properties of the human 

cardiovascular and respiratory system the mathematical model equations are [10]:  
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where the functions  f   and  g   have been identified as follows [10]. 

Walking case: 

 f H,VA  )4921.36812.2exp( 0943.00479.0 HVA
  , 

 )0981.0exp(),( 7207.30HVVHg AA
   

Jogging case: 

f H,VA  )1522.19990.0exp( 2280.01179.0 HH  , 

 )0981.0exp(),( 2105.0HVVHg AA
   

Running fast: 

 ),( AVHf     exp   )7518.05472.0( 2846.03820.0 HVA
  , 

 exp),( AA VVHg     )7440.1( 0985.0H  . 

The constants of the model equations (1) are given as 0.0112, 0.1724 [10]. 
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Figure 1. A three compartment diagram of human cardiovascular system 

It has been shown that the role of the human respiratory is to exchange the unwanted gas by 

products of metabolism  2CO   for  2O   which is necessary for metabolism. The transfer of these 

gases is then distributed to the different parts of the body through the capillaries and the alveoli. 
The figure 1 is composed with three compartments which are systemic and pulmonary, they are 

arranged in series and two pumps (left and right ventricle). The right heart pumps blood into the 

pulmonary arteries, which form a tree that distributes the blood to the lungs. The smallest 
branches of this tree are the pulmonary capillaries, where carbon dioxide leaves and oxygen 

enters the blood. Leaving the pulmonary capillaries, the oxygenated blood is collected by the 

pulmonary veins, through which it flows back to the left heart. 

Proposition  [10]. 

Assume that  f   and  g   are positive functions and differentiable with respect to their argument, 

then for given positive constants  
0

vsP   and  
0

asP  , there exist control functions  H  , VA such that 

the system () admits a unique positive solution Pas, Pvs C1 0,T 
2
 that satisfies  

0)0( asas PP   and  Pvs 

0 Pvs.
0 
 Moreover this solution is asymptotically stable. 

The effectiveness of the control of heart rate and alveolar ventilation is influenced by the transport 

delays because blood gases must be transported a physical distance from the lungs to the sensory 

sites where these gases are measured. These delays arise also in the contexts such as the 
baroreflex loop [13]. The interaction between heart rate, blood pressure, cardiac output, and blood 

vessel resistance is quite complex and gives the limited knowledge available of this interactions. 

The model equations (1) present the cardiovascular respiratory control mechanism via an optimal 
control derived from control theory. This control is stabilizing and is reasonable approach based 

on mathematical considerations as well as being further motivated by the observations that many 

physiologists cite optimization as a potential influence in the evolution of biological system [14]. 
In this work we adapt model equations (1) to include the effects of two transport delays as follows 

,
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where vs, as are respectively systemic arterial and systemic venous delays and     and    are 
positive constants. 

We are interested in determination of the equilibrium points and its stability. 

Let us take   
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then the model (2) becomes  
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Let (x*,y*)
T
 be an equilibrium point of variable state  (x,y)

T
 and  (u1,u2)

T
 be the 

equilibrium of corresponding control parameters  u1,u2
T
 . At the equilibrium point we 

have 

x( t)= x (t- as )= x* , y(t)- y( t- vs )=y* , u1(t)= u
*

1 and u2( t)= u
*

2 

and the system (3) becomes 
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which can be written as follows 
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Solving system (5) we get  
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3. ASYMPTOTIC STATES 
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the system (3 ) is written as follows   
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Using the first order Taylor series around the equilibrium point, we get  

...)(
),,(

)(
),,(

)(
),,()(

...)(
),,(

)(
),,(

)(
),,()(

22

2

23

2221

11

1

13

1211

uu
u

uyxf

xx
x

uyxf
yy

y

uyxf

dt

tdy

uu
u

uyxf

yy
y

uyxf
xx

x

uyxf

dt

tdx

as

as

vs

vs

 

After calculations, the linearized system becomes  



Hopf Bifurcation of A Mathematical Model of Blood Partial Pressures in Human Cardiovascular-

Respiratory System  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)              Page 660 

,

)()()()()(
)(

)()()()()(
)(

221

1

111

1

uuxxxuxyy
dt

tdy

uuyyyuyxx
dt

tdx

as

vs

 

which can be written in matrix form as follows 
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The solution of the system (6) can be written as 
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Calculating the derivative from (7) we obtain  
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Taking into account (7) and (8) the system (6) becomes  
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We know that the stability of this solution depend on the property of the parameter  .   

Therefore, to find the stability of the solution of equation (6) is to study the stability of the 

homogeneous equation of the form  

)()()(
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that is .0
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From the equation (9) we deduce the characteristic equation of the form:  
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After the calculations we get 
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Finally we obtain the characteristic polynomial of the form 

.012)(
)(2 vsaseP                                                                                (12) 

Let us set  i  , the determination of Hopf bifurcation points for the equation (12) results in 

solving the system 

( , , ) 0

( , , ) 0

g i

g i

K

L
 

where  

( , , ) Re( ( ))    ( , , ) Im( ( ))g i g iK P i and L P i                                                       (13) 

are respectively real and imaginary part of  ( )P i   [15]. The purpose of calculation is to try and 

find out bifurcation points using the  -dense curves in  R2 . The general algorithm for 

computing the bifurcation points of the system that being have the general form as (9) constitutes 

the main outcomes presented in [15]. We adopt the algorithm to our situation as follows. 

1. Set  0   and define  h   as   -dense curve in  R
2

  

2. Write the functions  K   and  L   as defined in (13) 

3. Define  ( , ) ( , ( ))K K h   and  ( , ) ( , ( ))L L h   where  ϕ   is angle to be 

determined 
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4. Find ( ,  ) solution of  ( , ) 0K   and  ( , ) 0L   

5. Set  ( )h   as bifurcation point. 

We apply this algorithm in order to get the critical delays of the system (9). From the results 

presented in [15] the curve defined by 

1 2cos ,     sin ,  0,1,2,....k k k kx x k  

is   -dense in  R2
  where    is a constant to be correctly chosen. The critical delays for 

Hopf bifurcations are given by cos ,   sin ,g i
 where    is obtained at step 

4 of above algorithm.  

4. TEST RESULTS 

Our numerical simulations aim to determine the Hopf bifurcation points for a two delays model in 

the case of physical activities. For this purpose we consider an observed data of walking, jogging, 

running fast cases for the values presented in the table 1. Taking  3.5   to have a curve that 

covers the space  R2
  of the delay parameters and setting initial value  0    1.3   and 

considering three physical activities, the delay parameters are given in the table 2, 3 and 4 

respectively.  

Table 1. The mean value for the heart rate, the alveolar ventilation, venous and arterial systemic pressure 

for the rest and three cases of physical activities. 

Exercise intensity  Rest  Walking  Jogging  Running Fast 

Ventilation (L/min)  6 8.5 15 25 

Heart rate (Beats /min)  70 85 140 180 

Arterial Pas(mmHg)  140 110 135 170 

Venous Pvs(mmHg)  3.566 3.46 3.28 3.23 

Table 2. Delay parameters from the resolution of algorithm in the walking case. 

Delay parameters  Stability  Hopf bifurcation  Instability 

τas 0.6689 0.8989 1.5899 

τvs 0.6889 0.9999 1.8901 

Table 3. Delay parameters from the resolution of algorithm in the jogging case. 

Delay parameters  Stability  Hopf bifurcation  Instability 

τas 0.6989 0.8660 0.8989 

τvs 0.6999 0.8999 0.9999 

Table 4. Delay parameters from the resolution of algorithm in the running fast case. 

Delay parameters  Stability  Hopf bifurcation  Instability 

τas 0.6698 0.8799 0.8898 

τvs 0.6994 0.8669 0.9654 

Implementing the algorithm presented in the section 2 we have the results illustrated in the figures 

2, 2 and 4. 
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Figure 2: Variation trajectory of systemic arterial and systemic venous pressures ((a), ( b), (c), and (d), (e), 
(f) ) compared to their respective equilibrium (dashed line) for a 30 years old woman during walking 

physical activity. The simulations are related to delay parameters from table 2. The transition phases are 

illustrated from left to right (phase asymptotically stable towards unstable phase) and the curve in the 

middle correspond to Hopf bifurcation parameters. 

 

 

Figure 3: Variation trajectory of systemic arterial and systemic venous pressures ((a), ( b), (c), and (d), (e), 
(f) ) compared to their respective equilibrium (dashed line) for a 30 years old woman during jogging 

physical activity. The simulations are related to delay parameters from table 3. The transition phases are 

illustrated from left to right (phase asymptotically stable towards unstable phase) and the curve in the 

middle correspond to Hopf bifurcation parameters. 
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Figure 4: Variation trajectory of systemic arterial and systemic venous pressures ((a), ( b), (c), and (d), (e), 

(f) ) compared to their respective equilibrium (dashed line) for a 30 years old woman during running fast 

physical activity. The simulations are related to delay parameters from table 4. The transition phases are 

illustrated from left to right (phase asymptotically stable towards unstable phase) and the curve in the 

middle correspond to Hopf bifurcation parameters. 

The phase portraits of transition phases for determinant parameters (Systemic arterial and 

Systemic venous pressures) are plotted in the figures 5, 6 and 7.  

 

Figure 5: The phase portrait ( systemic arterial pressure versus systemic venous pressure according to 

variation of transition phases plotted in the figure 2 for a 30 years old woman during walking physical 

activity. The curves are illustrated from (a) to (c) (phase asymptotically stable towards unstable phase) and 

the curve in (b) corresponds to Hopf bifurcation. 
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Figure 6: The phase portrait ( systemic arterial pressure versus systemic venous pressure according to 

variation of transition phases plotted in the figure 3 for a 30 years old woman during jogging physical 

activity. The curves are illustrated from (a) to (c) (phase asymptotically stable towards unstable phase) and 

the curve in (b) corresponds to Hopf bifurcation. 

 

Figure 7: The phase portrait (systemic arterial pressure versus systemic venous pressure according to 

variation of transition phases plotted in the figure 4 for a 30 years old woman during running fast physical 

activity. The curves are illustrated from (a) to (c) (phase asymptotically stable towards unstable phase) and 

the curve in (b) corresponds to Hopf bifurcation. 

In the walking case as first case of physical activity, the numerical simulation of transition phase 
of the arterial and venous systemic pressure use the delay parameters given in the table 2. This 

transition phase is illustrated in the (figure 2(b) and (e)) while phase portrait for those two 

physiological parameters for systemic arterial and systemic venous pressures are shown in the 
figure 5. We find that during walking, a small perturbation of Hopf bifurcation's delay parameters 

allows the subject to pass from stable state (figures 2(a) and (d))  by passing through an 

intermediate transition to unstable state (figures 2(c) and (f)). In this situation of instability, it 

appears that the state of subject causes to grow worse from the greatest value to the state closed to 
the equilibrium. In the case of stability, the state of the subject remains stationary around the 

equilibrium but a small perturbation causes oscillations which correspond to Hopf bifurcations 

(figure  2(b) and (e)). A small perturbation of Hopf bifurcation's delay parameters can be used to 
suffer a sudden downfall to an unstable state. The stability and instability behaviors of transition 

phase of the systemic arterial and systemic venous pressure are also shown by the phase portrait 
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where we have a stable spiral figure 5(a) and unstable spiral figure 5(c). The results of numerical 
simulation by taking delay parameters given in the table 3 and 4 respectively show the variation 

of transition phase of arterial and venous systemic pressures in jogging case (figures 3 and 6) and 

running fast case (figure 4 and 7 ). The small perturbation of Hopf bifurcation's delay parameters 

can be used to suffer a sudden downfall to an unstable state. From these figures we find 
similarities in the behavior of walking case (figure 2 and figure 5). 

5. CONCLUDING REMARKS 

In this work we have investigated Hopf bifurcation for a bicompartmental mathematical model 

that describes the responses of arterial and venous pressures of cardiovascular-respiratory system 

due to its controls (heart rate and alveolar ventilation). An algorithm is used to find delay 

parameters of stability, instablility and Hopf bifurcation for a 30 years old woman during three 
different physical activities which are walking, jogging and running. The results show that Hopf 

bifurcations are the intermediate oscillation solutions from stability to instability regions. 
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