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Abstract: In this paper the generalize a well-known asymptotic formula in two different ways.

 

1. INTRODUCTION 
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ECKFORD COHEN [1] has generalized (1.1) in the form given below: 
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Later W.NARKIEWICZ [2] has given a simple proof of (1.2) 

In the present paper we give generalizations of (1.1) in two different ways. 

2. MAIN RESULTS 
In this section we prove the following.  
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proving the theorem. 

Remark: In the case k = 0 Theorem 2.1 gives (1.1).                                                                  (2.4) 

We can further generalize Theorem 2.1 in a different way as follows. 

Theorem: Suppose that h (n) is an arithmetic function such that                                               (2.5) 
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 Proof: Since  we get by (2.6), 
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(Remark: Taking ) nn  allfor  1=h  in (2.8) we get (1.1). Also the case h(n)=nk  gives the 
Theorem 2.1.                                                                                                                              (2.10) 
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