International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 7, July 2014, PP 646-648
ISSN 2347-307X (Print) & ISSN 2347-3142 (Online)
www.arcjournals.org

On a Generalized Summation Formula

M. Ganeshwar Rao

Chaitanya Bharathi Institute of Technology Gandipet, Hyderabad Andhra Pradesh, INDIA mganeshcbit@gmail.com

Abstract: In this paper the generalize a well-known asymptotic formula in two different ways.

1. Introduction

Suppose g(n) is an arithmetic function and $f(n) = \sum_{d|n} g(d)$. If the series $\sum_{n=1}^{\infty} g(n)$ converges absolutely it is well known that

$$\lim_{\chi \to \infty} \frac{1}{\chi} \sum_{n \le \chi} f(n) = \sum_{n=1}^{\infty} \frac{g(n)}{n}$$
(1.1)

ECKFORD COHEN [1] has generalized (1.1) in the form given below:

If the series
$$\sum_{n=1}^{\infty} \frac{g(n)}{n}$$
 is absolutely convergent and $g_s(n) = \sum_{d|n} g(d)\tau_s\left(\frac{n}{d}\right)$ where $\tau_s(n)$ (1.2)

Is defined by
$$\tau(n) = 1$$
, $\tau_{s+1}(n) = \sum_{d|n} \tau_s(d)$, then

$$\lim_{x \to \infty} \frac{1}{x \log^{s-1}(x)} \sum_{n \le x} g_s(n) = \frac{1}{s-1} \sum_{n=1}^{\infty} \frac{g(n)}{n} (s = 1, 2, 3, ...)$$

Later W.NARKIEWICZ [2] has given a simple proof of (1.2)

In the present paper we give generalizations of (1.1) in two different ways.

2. MAIN RESULTS

In this section we prove the following.

Theorem Suppose g(n) is an arithmetic function and
$$f_k(n) = \sum_{d|n} g(d) \left(\frac{n}{d}\right)^k$$
 (2.1)

If $\sum_{n=1}^{\infty} \frac{g(n)}{n}$ is absolutely convergent then

$$\lim_{x \to \infty} \frac{1}{x^{k+1}} \sum_{n \le x} f_k(n) = \frac{1}{k+1} \sum_{n=1}^{\infty} \frac{g(n)}{n^{k+1}} \text{ for any } k \ge 0$$
(2.2)

Proof: For any $k \ge 0$ note that

$$f_k(n) = \sum_{d\delta = n} g(d) \delta^k$$
$$= \sum_{d \le x} g(d) \left[\sum_{\delta \le \frac{x}{d}} \delta^k \right]$$

©ARC Page | 646

$$= \sum_{d \le x} g(d) \left(\frac{1}{k+1} \left(\frac{x}{d} \right)^{k+1} + o\left(\frac{x}{d} \right)^k \right)$$

$$= \frac{x}{k+1} \sum_{d \le x} \frac{g(d)}{d^{k+1}} + o\left(x^k \sum_{d \le x} \frac{|g(d)|}{d^k} \right).$$

which gives

$$\frac{1}{x^{k+1}} \sum_{n \le x} f_k(n) = \frac{1}{k+1} \sum_{n \le x} \frac{g(n)}{n^{k+1}} + O\left(\frac{1}{x} \sum_{n \le x} \left| \frac{g(n)}{n^k} \right| \right)$$
(2.3)

Now since $\sum_{n=1}^{\infty} \frac{g(n)}{n}$ is absolutely convergent, the series $\sum_{n=1}^{\infty} \frac{g(n)}{n}$ and $\sum_{n=1}^{\infty} \frac{|g(n)|}{n^{k+1}}$ are both convergent. Therefore taking limits as $x \to \infty$ in (2.3) we get

$$\lim_{x \to \infty} \frac{1}{x^{k+1}} \sum_{n \le x} f_k(n) = \frac{1}{k+1} \sum_{n=1}^{\infty} \frac{g(n)}{n^{k+1}},$$

proving the theorem.

Remark: In the case
$$k = 0$$
 Theorem 2.1 gives (1.1). (2.4)

We can further generalize Theorem 2.1 in a different way as follows.

$$\sum_{n \le x} h(n) = A.x^s + B(x) \text{ where } B(x) = o(x^s)$$
(2.6)

Let g(n) be an arithmetic function such that

$$\sum_{n=1}^{\infty} \frac{g(n)}{n^s} converges absolutely.$$
 (2.7)

If f(n)=(g*h)(n) then

$$\lim_{x \to \infty} \frac{1}{x^s} \sum_{n \le x} f(n) = A \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$$
(2.8)

Proof: Since $f(n) = \sum_{d\delta=n} g(d)h(\delta)$ we get by (2.6),

$$\begin{split} \sum_{n \leq x} f(n) &= \sum_{d \leq x} g(d) h(\delta) \\ &= \sum_{d \leq x} g(d) \left(\sum_{\delta \leq \frac{x}{d}} h(\delta) \right) \\ &= \sum_{d \leq x} g(d) \left[A(\frac{x}{d})^s + B(\frac{x}{d}) \right] \\ &= A x^s \sum_{d \leq x} \frac{g(d)}{d^s} + \sum_{d \leq x} B(\frac{x}{d}) g(d), \end{split}$$

which gives

$$\frac{1}{x^{s}} \sum_{n \le x} f(n) = A \sum_{n \le x} \frac{g(n)}{n^{s}} + \frac{1}{x^{s}} \sum_{n \le x} B\left(\frac{x}{n}\right) g(n)$$

$$= A \sum_{n \le x} \frac{g(n)}{n^{s}} + o\left(\sum_{n \le x} \frac{g(n)}{n^{s}}\right)$$
(2.9)

since $\frac{B(x)}{x^s} \to 0$ as $x \to \infty$. Now taking limits as $x \to \infty$ in (2.9), we get Theorem 2.8.

Remark: Taking h(n) = 1 for all n in (2.8) we get (1.1). Also the case $h(n) = n^k$ gives the Theorem 2.1. (2.10)

I thank Professor V. Siva Rama Prasad for his helpful suggestions in the preparation of this paper.

REFERENCES

- [1] ECKFORD COHEN; Arithmetical function associated with unitary Divisors of an integer, Math .Zeit; 74 (1960),66-80.
- [2] NARKIEWICZ.W. On a summation formula of E.COHEN, Colloq, Math; VOL XI. (1963), 85-86.