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Abstract: This paper describes that the concepts of P- lattice measure space, countable union 
(intersection) of P-lattice measurable sets, and establish that the measurability’s of these p-lattice 
measurable sets which analogs to Boolean structures. 
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1. INTRODUCTION 
By [2] Let S be any (non-empty) set that represents a sample space. Here we allow the set S to be 
arbitrary (either finite, countably infinite, or uncountably infinite). Let F denote a collection of 
subsets of S. We say a collection F is a sigma algebra (also called σ -algebra) if it satisfies the 
following three properties 

1. The full sample space S is in F, and the empty set is φ  in F. 
2. If a set E is in F, then its complement Ec is also in F. 

3. If { } is a finite sequence of subsets, each of which is in F, then the union is also   

in F. Likewise, if 

M
1nnE = n

M
n E1=U

{ }∞=1nnE

nn E∞
=1

is a countable sequence of subsets, each of which is in F, then the 

countable union U is also in F.  

The set F consisting of all subsets of the sample space S is (trivially) a sigma algebra. However, it 
is possible to have sigma algebras that do not contain all subsets of S. For example, given any 
non-empty sample space S, the 2-element collection of subsets consisting of only φ  and S is 
trivially a sigma algebra. For another example, if we have a finite sample space S = {1, 2, 3, 4}, it 
is easy to show that the following collection of sets F satisfies the defining properties of a sigma 
algebra: � = {φ ,{1,2},{3,4},{1,2,3,4}}. This particular sigma algebra F does not include the set 
{1, 2, 3}. The example illustrates sigma algebra for a finite sample space S. Of course, for the 
context of probability theory, there is no reason to talk about sigma algebras at all unless we 
consider sample spaces S that are uncountably infinite. In the case when S is the unit interval [0, 
1], the Borel sigma algebra F is the collection of all open intervals (a, b) such that 0 ≤ a < b ≤ 1, 
together with all complements of these, all finite or countably infinite unions of these, all 
complements of these unions, and so on. It is not obvious that this procedure does not include all 
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possible subsets of [0, 1], but it can be shown that it does not. Clearly all sigma algebras are 
algebras, but the reverse is not true. 

In section2 by[1]lattice σ-algebra, lattice measurable space, we define probability of lattice 
measure space, σ- P –lattice measurable set,δ  - P –lattice measurable set, and insection3 we 
proved that these measurable sets are P –lattice measurable. 

2. PRELIMINARIES 
Definition2.1. Let S is the sample space and F is a lattice of any subsets of S. If a lattice F 
satisfies the following conditions, then it is called a lattice σ-Algebra 

(1)  φ ∈F     (2)∀ E ∈F, Ec∈F     (3) If En∈F for n = 1, 2, 3 ....., then   En∈F 
∞

=
∨

1n

We denote σ (F), as the lattice σ -algebra generated by F. 

Example of lattice sigma algebra 

Power sets of sample spaces are always lattice sigma algebras. Suppose that S = {1, 2, 3}.  

A lattice sigma algebra F is the collection of sets S where 
F = {φ , {1, 2, 3}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.  

The pair (S, F) is called a lattice measurable space. Now define a probability lattice measure P (E) 
for all subsets E of the sample space S, including the empty setφ . 

Definition2.2. A probability P on a lattice measurable space (S, F) is a function P:F→ [0,1] such 
that (1) P(S) = 1, P(φ ) = 0.(2) P(E) ≥ 0 for all events E  S. ⊆

(3) If { }  is a finite sequence of mutually exclusive events (so that En � Em = M
1nnE = φ  for all n≠m), 

then  ( )∑
=

=
M
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nEP∨
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Likewise, if { }  is a countably infinite sequence of mutually exclusive events, then ∞
=1nnE

( )∑∨
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The triple(S,F, P) is called a probability lattice measure space. The subsets E of S which belong to 
F are called probability of lattice measurable sets or simply P- measurable. In a probability 
context these sets are called events and we use the interpretation P (E) = “the probability that the 
event E occurs”. 

Definition2.3. By a  - P –lattice measurable we mean a countable union of P –lattice 
measurable sets. 

σ

Definition2.4. By a  - P –lattice measurable we mean a countable intersection of P –lattice 
measurable sets. 

δ

Result2.1 [1] If E is measurable set if only if  is also measurable. cE

3. σ  - P-LATTICE MEASURABLE AND δ - P –LATTICE MEASURABLE 

Theorem3.1. If  are pair wise disjoint P-lattice measurable sets and E = , then 

E is P –lattice measurable (or) Every  - P- lattice measurable is P-lattice measurable and also 

P(E) = . 

.......E,E 2,1

)

∞

=
∨

1k kE

σ

∑
∞

=1k
kP(E

Proof. Part1.   It is given that =∧  EE ji φ for i ≠ j,  
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k
We have P( ) ≤ ∑ .........(1). Clearly ≥ . 

∞

=
∨
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Which implies P( ) ≥ P( ) …………(2). We know that if
∞

=
∨

1k
Ek

n

k 1=
∨ Ek =∧  E ji φE . 

Which leads to P( ) = P( ) + P( )   (from definition 2.2.). 21 EE ∨ 1E 2E

Extending, by induction, the result for infinite number of pair wise disjoint P-lattice measurable 
sets, we get 

P( ) = . Then we have P( )  ≥  ∑ (By (2)). 
n

k 1=
∨ kE ∑

=

n
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k )P(E

∞

=
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n
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Letting n→ , P( )  ≥ ………..(3). From (1) and (3), ∞
∞

=
∨

1k kE ∑
∞

=1k
k )P(E

we have P( )  = . 
∞

=
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1k
Ek ∑

∞

=1k
k )P(E

Part2.  Let  are pair wise disjoint P-lattice measurable sets. .......E,E 2,1

Clearly   E =  =   
∞

=
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1k kE .....)E((E.........)E(EE c
k

1n

1kk
c
121 ∨∨∧∨∨∧∨

−

=

Evidently  are disjoint P-lattice measurable sets and hence  .............. ,EE ,E c
121 ∧

By part1,  is P-lattice measurable.  
∞

=
∨

1k
Ek

Hence every σ  - P- lattice measurable is P-lattice measurable.  

Theorem 3.2.First Valuation Theorem: 

Suppose that { } is monotonic increasing sequence of P-lattice measurable sets and E = . 

Then P(E) = P( ).  

kE

∞→
Lt

∞

=
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Proof. Write E =  .....)E((E.........)E(EE c
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So we have E = (A disjoint union) by theorem 3.1.  )E(E(E c
k1k1k1 ∧∨∨ +
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       = P( ) - P( ) +  = . 1E 1E
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Theorem3.3. If  are P-lattice measurable sets, then  is P-lattice measurable (or) 

every δ - P-lattice measurable is P-lattice measurable. 

.......E,E 2,1 k1k
E

∞

=
∧
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Proof.  By theorem 3.1.  E =  is P-lattice measurable.  
∞

=
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1
Ek

Let G = .  Then  = = . Given that each E  is a P-lattice measurable.  k1k
E

∞

=
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k1k
)E(
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∞
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Hence by Result 2.1., each  is a P-lattice measurable.  c
k

Which implies  is P-lattice measurable (Every σ  - P -lattice measurable).  c
k1k

E
∞

=
∨

This leads to  is P-lattice measurable. cG
Hence G is P-lattice measurable (By Result 2.1.). 

Theorem 3.4.Second Valuation Theorem: 

Suppose that { } is a monotonic decreasing sequence of P-lattice measurable sets and  kE

E = .  k1k
E
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Which implies P(E) = P( ).  
∞→n

Lt nE

4. CONCLUSION 
This paper described that the concepts of probability lattice measure space, countable union 
(intersection) of p-lattice measurable sets, and established that the measurability’s of these p-
lattice measurable sets. 
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