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Abstract: Using left-hand and right-hand Gateaux derivative of a 2-norm in [1] is given functional
0(x,2)(y), which is generalization of 2-inner product and is used for defining a quasi 2-pre-Hilbert

space. Further, in [1] is proved that each quasi 2-pre-Hilbert space is smooth. The strictly convexity in
quasi 2-pre-Hilbert space is not object of interest in [1]. So, in this paper exactly that will be the focus of
our interest.
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1. INTRODUCTION

Let (L,||--]) be a real 2-normed space. Then on LxL xL exist the functional

N+(X z)(y)= lim lIx+ty, z[|-lIx, 2]l N_(X z)(y)= lim lIx+ty, z|I=[1x,Z]| (1)
t—0" t t—0" t
which are called as left-hand and right-hand Gateaux derivative of the 2-norm ||-,-|| at (x,z) in

the direction y, respectively. Therefore, exists the functional

9(x,2)(y) =@(N_(X,Z)(Y)+ N, (x,2)(y)) . ()

The functional g(x,z)(y) is generalization of 2-inner product, and in 2-pre-Hilbert space

corresponds to 2-inner product, Theorem 2, [1]. The Theorem 1, [1] proves that in each 2-normed
space the following statements are true:

9(x,2)(x) =[x,z |]*, for every x,zeL, 3
lax. )Y I x.zl-Ily.z]l, for every x,y,zeL, (4)
g(x,2)(x+y) =l x, z|” +g(x, 2)(y) , for everyx,y,zeL, (5)
g(ax,2)(BY) = xfa(x,z)(y), for every x,y,zelL;a,feR, (6)
1,2 | PEALZER < g, 2)(y) g x, 2 2R 5 <0, 650,x,y, 2L, )

In a 2-pre-Hilbert space hold the parallelepiped equality

Ix+y,zIF +Ix=y.zIP=2(xz I +lly,2I?), x,y.zeL ®)
and the following one, which is equivalent to the parallelepiped equality

Ix+y.zIt =lix=y.zI*=8x 2 I? +1y.2IF)-(x,y12), ©
(Lemma 2, [1]), and thus in 2-normed space the equality
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Ix+y,zIF =lx=y.zI*=8(1xz 7 9(x.2)(Y)+ 1 v,z I 9(y,2)(x)), (10)
X, ¥,z €L, generalize (9), i.e. generalize the parallelepiped equality ([1]).

Definition 1 ([1]). A 2-normed space L is called as quasi 2-pre-Hilbert space if the equality (10)
holds for every x,y,zeL.

Definition 2 ([2]). A 2-normed space (L,||--|) is called as smooth if for x =0 and z ¢V (x), the
2-norm |-,-|| is Gateaux differentiable in (x,z) for each direction y.

The quasi 2-pre-Hilbert spaces hold the following Theorem.
Theorem 1 ([1]). Every quasi 2-pre-Hilbert space (L,|-,-||) is smooth.

2. ANGLE BETWEEN THE SUBSPACES V ({X,z}) AND V ({y, z})

Let (L,(-,-)) be areal pre-Hilbert space. Then

(xy) (x,2)
(X ylz)= :
(v.2) (z2)
for every x,y,z e L, defines a standard 2-inner product, and
1%,y [I= (x, x| y)¥2

defines a standard 2-norm. If L=R? with the ordinary scalar product and the vectors x,y,z e R®
are not by pairs linearly dependent and x(y,z)=«, £(z,X)=/p and £(X,y) =y, that it’s easy to
compute that

(x,ylz) _ cosy—cosacosp
Ix,zl[ly.zl ~  sinasing

=C0Syy,

and y4 is an angle between planes parallel to the vectors x,z and y,z. The last, is a real cause of
introducing the following definition.

Definition 3. Let (L,(--|-)) be a real 2-pre-Hilbert space, x,y,zeL, the sets {x,z} and {y,z}

are linearly independent and V ({x,z}) and V ({y,z}) are subspaces generated by the sets {x,z}
and {y, z}, respectively. The angle between the subspaces V ({x,z}) and V ({y,z}) is defined by

cos(V ({x, 2.V ({y, 2)) = 212 (11)

Ix.z[Hly,zll *

We already mentioned that the functional g(x,z)(y) is generalization of 2-inner product, and

exist in each 2-normed space. Using this and the inequality (4), follows that in 2-normed space,
the following definition of an angle between the subsets V ({x, z})and V ({y, z}) is regular.

Definition 4. Let (L,||-,-|)) be a real 2-normed space, X,y,zeL, the sets {x,z} and {y,z} are
linearly independent and V ({x,z}) and V ({y,z}) are subspaces generated by the sets {x,z} and
{y, z}, respectively. The angle between the subspaces V ({x,z}) and V ({y,z}) is defined by

oY) YLD "

Example 1. In [3] is proved that in the set of bounded sequences of real numbers 1*° with

X Xj o o >
%, yl= sup » X=(X)iz1, Y= (Yidi=1 €

i,jeN
i<j

i Y
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is defined 2-norm. It means that (1,||-,-|)) is real 2-normed space. It is easy to check the validity
of

I%z[Hly,z[=1, NL(x2)(y)=1=N_(x,2)(y),
N, (y,2)(x) =1=N_(y,z)(x) and g(x,z)(y) =1=g(y,z)(X)
for the vectors

_ 1 1 1 _ 1 1 1 _
X=(@-F 1l )y =01-F1- %0 .) and z=(1,0,0,...,0,...) ,

— T
and using (12) we get

cos(V ({x, 21V ({y, 23)) = LRG0 g

3. CONVEXITY IN QUASI 2-PRE-HILBERT SPACE

Definition 5 ([4]). Let L be a real vector space with dimL >1 and the function [,-|-]: >R is
such that

1) [xx]y]>0, if the set {x, y} is linearly independent,

2)  [xx|yl=[y,y|x], foreach x,yeL,

3) [Ax,¥|z]=A[x,y]|z], foreach x,y,zeL and for each 1 eR,
4) [x+x,ylz]=[x¥y]|z]+[x" y|z], for each x',x,y,z€L,

5) |[x,y|z]|2s[x,x|z]-[y,ylz],foreach X, ¥,Zel.

The function [-,-|-] is called as 2-semi-inner product and the pair (L,[,,-|-]) is called 2-semi-inner
product space.

Theorem 2. If 2-normed space L is smooth, then the functional g(x,z)(y) is linear in terms of
y and further more

[y, x|z]=g(x 2)(y), (13)
for each x,y,z e L defines 2-semi-inner product.

Proof. Let L be smooth. Then the 2-norm is Gateaux differentiable in (x,z) in each direction y,
i.e.

N_(x,2)(y) = N, (x,2)(y) = N(x,2)(y)
and using (2), follow
9(x, 2)(y) =ll x, Z[IN(x,2)(y) . (14)
Further, if the set {x, y} is linearly independent, the theorems 2.2 and 2.4, [5] imply followings

[y, ¥ IXI= gy, )(y) =l . x IN(y,x)(y) =l v, X [*> 0, and [y, y | X] =]l y,x [P=l| x, y [P=[x,x] y]
i.e. hold the axioms 1) and 2) of definition 5. The theorem 2.4, [5] and the mentioned above imply
[Ay. x| z]= %,z [ N(x, 2)(Ay) = 21| X, Z[|N(x,2)(y) = A[y, x| Z]

[y+y.x|z]=9(x,2)(y +y) =l X, | N(x,2)(y + Y")
=%,z [[(N(x,2)(y) + N(x,2)(y")
=9(x,2)(y) +9(x, 2)(y) =Ly, x| z] +[y" x| z],
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Iy, x 121 7=l g(x, 2)(y) P=ll % z |2 - IN(x, 2)(y) P
AxzIP -y zIP=[xxz]-Iy, yz],

i.e. hold the axioms 3), 4) and 5) of definition 5. This actually means that (13) defines a 2-semi-
inner product on L.

The following Theorem about 2-semi-inner product is fully true:

Theorem 3 ([6]). If L be a space with 2-semi-inner product [-,-|-], then L is 2-normed space in
which 2-norm is defined by

1/2

1%y l=IXXxIYF*, x,yelL. (15)

If L bea 2-normed space, then in L may be introduced 2-semi-inner product [-,-|-] (in generally,
not unique), compatible with 2-norm, i.e. such that (15) holds.

Definition 6 ([7]). Let (L,||--]) be a 2-normed space, x,yeL are non-zero elements and
V(x,y) denotes the subspace of L generated by the vectors x andy. Space L is strictly convex
x+y

it | xz|=ly,z = > ,Z|=1and zeV(X,y), for x,y,zeL, imply x=y.

More characterizations of strictly convex 2-normed spaces are given in papers [2] and [8] — [21].
In paper [6] is given a following characterization of strictly convexity into a space with 2-semi-
inner product.

Theorem 4. Let L be a 2-normed space and [-,-|-] be 2-semi-inner product compatible with 2-
norm. Then L is strictly convex if and only if

X ylzl=ll %,z |-l y,z]l, zeV(X,y), implies y=Ax, for some 41>0.
Theorem 5. Let L be a smooth 2-normed space. Then L is strictly convex if and only if
cos(V({x,zH),V(y,z}) =1, z¢V(x,y), implies y = Ax, for some A>0. (16)
Proof. Let L be a smooth and strictly convex space. If
cos(V({x,Z).V({y.z})) =1, z&V(x,y).
then
a(x,2)(Y) +9(y. 2)(x) =2 x. z[|- |y, zll, z&V(X,y)
and by (4) we get following
9(x,2)(y) =9(y, 2) () =l x. z[|- |y, zl, z&V(x,y). 17)

But, L is smooth, so by Theorem 2, we get g(y,z)(x) is 2-semi-inner product compatible with 2-
norm in which holds (17). Finally, by Theorem (4), we get y =Ax, for some A>0.

Conversely, let L be a smooth and the condition (16) be satisfied. By Theorem 2, we get that (13)
defines a 2-semi-inner product compatible with the 2-norm. Let suppose,

g =l xzll-Iy.zll, zeV(x.y). (18)

Let z¢V(x,y) and L, =L/V(z) and || X, |,=||X,z||. Then, (L,,||-|l,) is normed space, ([9]).
Moreover, the space L is smooth, and so,

X+ty, z[|—|[X,Z H Xz 1y |-IX;
xty. 2%l _ iy, tIl el _ N (x,,y,)

N(x,z)(y) = lim!
t—0 t—0

It means, the space L, is smooth and by the equality (14) we get, the functional
97(Xz,¥2) =l Xzl N(Xz, ¥2),

is linear in terms of y,. Now, the equality (18) implies
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92 (Xz, ¥Yz) =l Xz M1l Yz Ilz» for x; #0,, y, #0,, (19)

So, using Theorem 3, p.p. 25 [22] we get y, Lg 9,(X,,-). The last conclusion used in Theorem 2
[5] in fact means that g,(y,,u,)=0, for each u, € g,(X,,-) . Let suppose that

Yy, =AX, +U,, LeR, U, €9,(X;,").

Then,
1Yz 12=97(Y2,Y2) = 02 (Y2, A%, +Uy)
=20,(Yz:%X;) +9,(Yz,Uz),
i.e.
29;(Y2 %) =ll vz 12 (20)
But,

92(Xz,Y7) = 97 (Xz, A%z +U;) = A9, (X7, X;) + 97 (X2, Uz)
=20, (%2, %) = A[1%, |},

Therefore the last equality and the equality (19) imply

1Yz lz=21% [l 2>0.
Finally, by the last equality and the equality (20) we get the following

92 (V2. %) =l Yz M %2 Il -
Now, the arbitrarily of z ¢V (x,y) and the last equality, imply
a(y. ) =lIx.zll-Ily.zll, zeV(x,y). (21)
By equalities (18) and (20) we get

cos(V({x,ZD.V{y.z}) =1, z&V(xy),
and by assumption, y = Ax, for some 1>0.
Finally, the assumption
a(x.)(y) =l zll-Ily.zll, z&V(x.y)

implies y = Ax, for some A >0. And, by Theorem 4 follows L is strictly convex.

Corollary 1. If L be a quasi 2-pre-Hilbert space, then L is strictly convex.

Proof. Let L be a quasi 2-pre-Hilbert space, i.e. let be satisfied the condition (10). If firstly, we
use the equality (10), and then (6) we get

y 4
Z
lly.zl |

4 4
XNy, zl+ylix, 2zl 21" =lIxIy zI= ylIx 21,21l

g .S ST, 6 SIS A Y L [ S
||||X|Z|| ly.zll | ||||X,Z|| lly.zll ” ||||X,Z||

Ix,zI*ly. zIf*
_ 8(Ixlly.zllzI* 9 (xlly. z2)(ylix. z) +ylIx.zLzIP g (ylix. 2l 2) (xlly, 2[))
Ix,zI*ly. zIf*
_ 8IxzPlly. 2P (9 (x,2)(¥)+9 (¥, 2)(x))
Ix,zI*ly, zIf*

=16cos(V ({x,z2}),V({y.z})),
i.e.
16cos(v ({x,.2).V ({y.2})) < 16~ || 2 — ol 211 (20)
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Further, if
cos(V({x,zZ}).V({y,z})) =1, z¢V(x,y),
by (20) we get
x Y 4
” ”X,Z” ”y,Z”’Z” SO, Zev(xl y)
Thus, y = Hx, i.e. the condition (16) holds. But, by Theorem 1, the space L is smooth, and so,

theorem 5 implies that the space is strictly convex.
4. CONCLUSION

By corollary 1, we proved each quasi 2-pre-Hilbert space is strictly convex, and in Theorem 5 we
gave a criteria a smooth 2-normed space to be a strictly convex. It is naturally to state the question
about necessary and sufficient conditions a quasi 2-pre-Hilbert space to be continuously convex,
and to be considered additional properties of quasi 2-pre-Hibert spaces.
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