International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 567-571
ISSN 2347-307X (Print) & ISSN 2347-3142 (Online)
www.arcjournals.org

On Functions A_f^s , G_f^s and H_f^s

M. Ganeshwar Rao

Chaitanya Bharathi Institute of Technology Gandipet, Hyderabad, Andhra Pradesh, India mganeshcbit@gmail.com

Abstract: In this paper we introduce the functions A_f^S , G_f^S and H_f^S for any multiplicative function f and for any regular convolution S and obtain a relation between them.

1. Introduction

For any arithmetic function f let functions A_f , G_f and H_f be

(1.1)
$$A_f(n) = \frac{1}{\tau(n)} \sum_{d|n} f(d)$$

(1.2)
$$G_f(n) = \left[\prod_{d|n} f(d)\right]^{\frac{1}{\tau(n)}}$$

and

(1.3)
$$\frac{1}{H_f(n)} = \frac{1}{\tau(n)} \sum_{d|n} \frac{1}{f(d)},$$

where $\tau(n)$ is the number of positive divisors of n.

Note that the function $A_f(n)$, $G_f(n)$ and $H_f(n)$ are respectively the arithmetic mean, geometric mean and harmonic mean of the function values of f at various positive divisors of n.

In 1974 A. C. Vasu [2] has considered these functions and proved the following

- (1.4) If f is multiplicative so are $A_f(n)$, $G_f(n)$ and $H_f(n)$
- (1.5) If f is completely multiplicative then $G_f^2(n) = A_f(n) \cdot H_f(n) = f(n)$

Let F be the set of all arithmetic functions

In this paper we introduce functions A_f^S , G_f^S and H_f^S for any $f \in F$ corresponding to regular divisors of S_n of n (defined below) and establish results which generalize (1.4) and (1.5)

2. PRELIMINARIES

Let F be the class of all arithmetic functions. For any positive integer n let S_n denote a set of positive divisors of n. For $f,g \in F$ their S-product or S-convolution f \overline{S} g, is defined by

$$(f \overline{S} g)(n) = \sum_{d \in S_n} f(d)g(\frac{n}{d})$$

©ARC Page | 567

where the sum is over the divisors $d \in S_n$.

- 2.1 The S-product is said to be *regular* if it satisfies the following conditions
 - (i) $(F, +, \overline{S})$ is a commutative ring with unity
 - (ii) $f \overline{S} g$ is multiplicative whenever f and g are.
- (iii) The arithmetic function u(n)=1 for all n has inverse $\mu_s \in F$ relative to \overline{S} (that is, $u \, \overline{S} \, \mu_s = \varepsilon$) and $\mu_s(n)=0$ or -1 when n is a prime power. μ_s is called the S-analogue of the Mobius function μ .

NARKIEWICZ [1] has characterized regular convolutions as follows:

2.2 Theorem. A S-convolution is regular if and only if the sets S_n have the following properties:

(i)
$$d \in S_m, m \in S_n \iff d \in S_n, \frac{m}{d} \in S_n$$

- (ii) $d \in S_n \Rightarrow \frac{n}{d} \in S_n$
- (iii) $\{1, n\} \subseteq S_n$ for every n
- (iv) $S_{mn} = S_m S_n = \{ab : a \in S_m, b \in S_n\}$ whenever $\gcd(m,n) = 1$
- (v) For every prime power p^{α} we have

$$S_{p^{\alpha}} = \{1, p^t, p^{2t}, ..., p^{rt}\}, rt = \alpha \text{ for some positive integer } t \text{ and } p^t \in S_{p^{2t}}, p^{2t} \in S_{p^{3t}},$$

2.3 Definition. If \overline{S} is a regular convolution the elements of S_n will be called *regular divisors* of n. The number of S- divisors of n is denoted by $\tau_s(n)$.

Since the Dirichlet convolution and the unitary convolution are both regular, the elements of D_n (the set of all positive divisors of n) and U_n (the set of all unitary divisors of n) are regular divisors of n.

(2.4): For any prime power p^{α} , the least positive integer t such that $p^{t} \in S_{p^{\alpha}}$ is called the *type of* p^{α} relative to S and is denoted by $t_{S}(p^{\alpha})$

If $t = t_s(p^\alpha)$ it follows from the Theorem 2.2 (v) that $t \mid a$ whenever $p^a \in S_{p^\alpha}$. Clearly we have

$$(2.5) \tau_{S}(n) = \sum_{d \in Sn} 1$$

(2.6) $\tau_S = u\overline{S}u$ where u is as in Definition 2.1 (iii) and since u is multiplicative, it follows from 2.1 (ii) that τ_S is multiplicative.

Also

(2.7)
$$\tau_s(p^{\alpha}) = \frac{\alpha}{t_s(p^{\alpha})} + 1$$
 for any prime power p^{α} .

3. MAIN RESULTS

Suppose S_n is a set of regular divisors of n. For any arithmetic function f we define

$$A_f^S$$
, G_f^S and H_f^S by

(3.1)
$$A_f^s(n) = \frac{1}{\tau_s(n)} \sum_{d \in S_n} f(d)$$

(3.2)
$$G_f^{S}(n) = \left[\prod_{d \in S_n} f(d)\right]^{\frac{1}{\tau_s(n)}}$$

And whenever f is nowhere zero

$$(3.3) \qquad \frac{1}{H_f^s(n)} = \frac{1}{\tau_s(n)} \sum_{d \in S_n} \frac{1}{f(d)}$$

Note that $A_f^D(n) = A_f(n)$, $G_f^D(n) = G_f(n)$ and $H_f^D(n) = H_f(n)$ where D_n denotes the set of all positive divisors of n.

3.4 Theorem: If f is multiplicative then A_f^S , G_f^S and H_f^S are all multiplicative.

Proof: By (2.6), τ_S is multiplicative. Again if f is multiplicative it follows by (2.1)(ii), that $f\overline{S}u$ is also multiplicative. Therefore $A_f^S(n) = \frac{1}{\tau_S(n)} (f\overline{S}u)(n)$ is also multiplicative. To prove the multiplicativity of G_f^S , note that for any n with $n = p_1^{a_1} \cdot p_2^{a_2} \dots p_r^{a_r}$ we have

(3.5)
$$G_f^S(n) = \left[\prod_{d \in S_{p_1^{a_1} \dots p_2^{a_2} \dots p_r^{a_r}}} f(d) \right]^{\frac{1}{\tau_s(p_1^{a_1} \dots p_2^{a_2} \dots p_r^{a_r})}}$$

Now using 2.2 (iii) each $d \in S_{p_1^{a_1} \cdot p_2^{a_2} \dots p_r^{a_r}}$ can be written uniquely as $d = d_1 d_2 \dots d_r$ where $d_i \in S_{p_i^{a_i}}$ for $i = 1, 2, 3, \dots, r$ and $\left(d_i, d_j\right) = 1$ for $i \neq j$. Therefore (3.5) can be written as

$$G_f^{S}(n) = \left[\prod_{i=1}^{r} \prod_{d_i \in S_{p_i^{a_i}}} f(d_i) \right]^{\frac{1}{\tau_s(p_1^{a_1}) \cdots \tau_s(p_r^{a_r})}}$$
$$= \prod_{i=1}^{r} G_f^{S}(p_i^{a_i})$$

Thus $G_f^S(n)$ is multiplicative

Observe that $H_f^s(n)$ can be defined only for the function f which are nowhere zero. If f is nowhere zero and multiplicative then so is $\frac{1}{f}$. Hence $A_{\frac{1}{f}}^s = H_f^s$.

Therefore H_f^S is multiplicative

3.6 Theorem: If f is completely multiplicative then

(3.7)
$$\left[G_{f}^{S}(n)\right]^{2} = A_{f}^{S}(n) \cdot H_{f}^{S}(n) = f(n) \text{ for all } n.$$

Proof: By Theorem 3.4 either side of (3.7) is multiplicative and therefore it is enough to verify the identity (3.7) in the case $n = p^{\alpha}$.

By (3.3) and the complete mulplicativity of f(n) and since a S-convolution is regular if and

only if the set S_n have the following the property, $d \in S_n \Rightarrow \frac{n}{d} \in S_n$

We have

$$\frac{1}{H_f^S(p^\alpha)} = \frac{1}{\tau_s(p^\alpha)} \sum_{d \in S_{p^\alpha}} \frac{1}{f(d)}$$

$$= \frac{1}{\tau_s(p^\alpha)} \sum_{d \in S_{p^\alpha}} \frac{f\left(\frac{p^\alpha}{d}\right)}{f(p^\alpha)}$$

$$= \frac{1}{f(p^\alpha)} \frac{1}{\tau_s(p^\alpha)} \sum_{d \in S_{p^\alpha}} f\left(\frac{p^\alpha}{d}\right)$$

$$= \frac{1}{f(p^\alpha)} \frac{1}{\tau_s(p^\alpha)} \sum_{d \in S_{p^\alpha}} f(d)$$

$$= \frac{1}{f(p^\alpha)} A_f^S(p^\alpha)$$

Thus

(3.8)
$$A_f^S(p^\alpha) \cdot H_f^S(p^\alpha) = f(p^\alpha)$$

which gives the second part of the identity (3.7)

Again

$$G_f^{s}(p^{\alpha}) = \left[\prod_{d \in S_{p^{\alpha}}} f(d)\right]^{\frac{1}{\tau_{s}(p^{\alpha})}}$$

$$= \left[\prod_{\substack{0 \le \beta \le \alpha \\ p^{\beta} \in S_{p^{\alpha}}}} f(p)^{\beta}\right]^{\frac{1}{\tau_{s}(p^{\alpha})}},$$

which gives

(3.9)
$$G_f^S(p^{\alpha}) = \left[\{ f(p) \}_{\substack{0 \le \beta \le \alpha \\ p^{\beta} \in S_{p^{\alpha}}}}^{\sum_{\beta} \beta} \right]^{\frac{1}{\tau_S(p^{\alpha})}}$$

But we have $S_{p^{\alpha}} = \{1, p^t, p^{2t}, ..., p^{rt}\}$ where $rt = \alpha$ and $t = t_s(p^{\alpha})$

Therefore by (3.4) we get

(3.10)
$$\sum_{\substack{0 \le \beta \le \alpha \\ p^{\beta} \in S_{p^{\alpha}}}} \beta = 0 + t + 2t + \dots + rt$$
$$= r \left(\frac{r+1}{2}\right) t$$
$$= \frac{\alpha}{2} \left(\frac{\alpha}{t} + 1\right)$$

On Functions $A_f^{\it S}$, $G_f^{\it S}$ and $H_f^{\it S}$

$$=\frac{\alpha}{2}\,\tau_{\scriptscriptstyle S}\big(p^{\scriptscriptstyle \alpha}\big)$$

From (3.9) and (3.10) we get

$$G_f^{s}(p^{\alpha}) = \left[f(p)^{\frac{\alpha}{2}\tau_{s}(p^{\alpha})} \right]^{\frac{1}{\tau_{s}(p^{\alpha})}}$$
$$= \left[f(p) \right]^{\frac{\alpha}{2}}$$

which gives (3.7)

3.11 Remark: In the case $S_n = D_n$, Theorem 3.4 and Theorem 3.6 respectively give (1.4) and (1.5)

We thank Professor V. Siva Rama Prasad for his helpful suggestions in the preparation of this paper.

REFERENCES

- [1] W.NARKIEWICZ, on a class of arithmetical convolution, Colloq. Math.10(1963) 81-94
- [2] A.C. VASU, Notes on certain arithmetical functions, Math. Student. XLII No.1(1974) 17-20