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Abstract:  In this paper we introduce the functions ,  and  for any multiplicative function  f 
and for any regular convolution S and obtain a relation between them.
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1. INTRODUCTION 

For any arithmetic function f let functions ,  and  be fA fG fH
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whereτ is the number of positive divisors of n. 

      Note that the function , ( )nAf ( )nG f  and ( )nH f  are respectively  the arithmetic mean, 
geometric mean and  harmonic mean of the function values of  f  at various positive divisors of  n. 

 In 1974  A. C. Vasu [2] has considered these functions and proved the following  

 (1.4)  If  f  is multiplicative so are  ( )nAf , ( )nG f  and ( )nfH  
 (1.5) If  f  is completely multiplicative then  
                          ( ) ( ) ( ) )(2 nfnHnAnG fff =⋅=

F
 

Let   be the set of all arithmetic functions . 

 In this paper we introduce functions  ,  and  for any  corresponding to 

regular divisors of   of  n (defined below) and establish results which generalize (1.4) and  
(1.5)  
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2. PRELIMINARIES 

Let be the class of all arithmetic functions. For any positive integer n let  denote a set of 

positive divisors of n. For  their  S-product or S-convolution 
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∈ . where the sum is over the divisors  

2.1 The S-product is said to be regular if it satisfies the following conditions  
  (i)  ( )SF ,,+  is a commutative ring with unity 
   (ii)  gSf  is multiplicative whenever  f  and  g are. 

       (iii)  The arithmetic function ( ) 1=nu  for all n has inverse Fs ∈μ  relative to S (that is, 

εμ =sSu  ) and ( ) 10 −= ornsμ  when n  is a prime power. sμ  is called the S-analogue of the 
Mobius function μ .  

NARKIEWICZ [1] has characterized regular convolutions as follows: 

2.2 Theorem. A S-convolution is regular if and only if the sets  have the following properties: nS
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2.3 Definition.  If  S  is a regular convolution the elements of will be called regular divisors 
of n.The number of S- divisors of n is denoted by 

nS
( )nsτ . 

 Since the Dirichlet convolution and the unitary convolution are both regular, the elements 
of (the set of all positive divisors of n) and U ( the set of all unitary divisors of n) are regular 
divisors of n. 
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(2.4): For any prime power , the least positive integer t such that is called the type of 

 relative to S and is denoted by 
p
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t  it follows from the Theorem 2.2 (v) that t whenever . Clearly we have  αp
a Sp ∈

(2.5)  ( )S nτ

uSuS =τ(2.6) where u is as in Definition 2.1 (iii) and since u is multiplicative, it follows from 
2.1 (ii) that  Sτ  is multiplicative. 

Also 
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for any prime power . 

3. MAIN RESULTS 

Suppose  is a set of  regular divisors of  n. For any arithmetic function  f  we define   

,  and  by 
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And whenever f  is nowhere zero 
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Note that , ff  where denotes the set of all 
positive divisors of n. 

3.4 Theorem: If f  is multiplicative then ,  and  are all multiplicative. 

Proof: By (2.6), Sτ  is multiplicative. Again if f  is multiplicative it follows by (2.1)(ii), that uSf

o multiplicative. Therefore  ( )is als ( ) ( )( )nuSf
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Now using 2.2 (iii) each can be written uniquely as  where 

for i and 
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Thus  is multiplicative 

Observe that  can be defined only for the function  f  which are nowhere zero. If f is 

nowhere zero and multiplicative then so is 

( )nH S
f
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1

. Hence SS H= f
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Therefore  is multiplicative SH

3.6 Theorem: If f is completely multiplicative then 

 

(3.7) ( )[ ] ( ) ( ) ( ) nnfnHnAnG S
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Proof: By Theorem 3.4 either side of (3.7)  is multiplicative and therefore it is enough to verify 
the identity (3.7)  in the case . αpn =

( )nf and  since a S-convolution is regular if and By (3.3) and the complete mulplicativity of  
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only if  the set have the following the property, nn S
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which gives the second part of the identity (3.7) 
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Therefore by (3.4) we get  
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From (3.9) and (3.10) we get  
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which gives (3.7) 

3.11 Remark:  In the case , Theorem 3.4 and Theorem 3.6 respectively give (1.4) and 
(1.5) 
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