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Abstract: The paper extends the applicability of our Matlab package Chebpack to find (generalized)
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1. INTRODUCTION

There is a comprehensive literature on the theory, applications and numerical methods of the
fractional calculus. For a brief history we refer to our open access paper Trif [1] and references
therein. We must remark that any algorithm using a discretization of a non-integer derivative has
to take into account its non-local structure which imply, in general, high storage requirements and
a great overall complexity of the algorithm.

Our Matlab package Chebpack, see Trif [2], is based on the operational form of the Chebyshev
spectral tau method and its main advantage is a unified approach for initial value problems,
boundary value problems, eigenproblems, nonlocal problems for ordinary, fractional or
distributed order differential equations. Chebpack assumes the representation of the unknown
functions in truncated Chebyshev polynomials series

1
y(x) =y, ,(x)= ECOT0 X+, T,(X)+---+c,,T,,(x), xe[-11]. 1)

If y(x) is a smooth function then the above approximation is spectrally accurate, i.e. the
approximation error decreases faster than any power of 1/n when n— . If y(x) is not
smooth, as it often happens with the solutions of fractional differential equations, the
approximation may require large values of n as it can be seen in some examples in Trif [1].

The aim of the presented paper is to extend the capabilities of Chebpack to spectrally approximate
functions with algebraic singularities such that y(x) = x%z(x), q>0 where z(x) is a well-
behaved function. The idea is to use the above Chebyshev spectral approximation only for the
function z .

The paper is structured as follows: in section 1 we describe the operational Chebyshev spectral
method, in section 2 we give the discretization of the fractional integral operators by using the
above idea and in section 3 we give numerical examples to illustrate the facilities of Chebpack for
fractional calculus of functions with algebraic singularities. All the necessary Matlab code for
reproducing the examples are now part of an updated version of Chebpack [2], in the folder
Examples, subfolder Fractional differential equations.
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2. THE OPERATORIAL CHEBYSHEV SPECTRAL METHOD

A sufficiently well-behaved function y(X) can be accurately approximated by its physical
representation y(x,), y(X,),..., y(X,) of values of Yy at the given gridpoints X = (xl, e X, ) for
example at the Chebyshev points of the first or second kind

2k -1 k-1
X, =—COS%,XK(2) :—cos%,kzl,...,n. )

The function Yy(X) can also be accurately approximated by its spectral representation
E:{co,cl,...,cn_l} where y,,(X) given by (1) is the unique polynomial obtained by

interpolating y(x) through the points X . Of course, the Chebyshev polynomials are defined on

dom =[-11] but any interval dom = [a,b] can be shifted to [-1,1] and we may use the shifted
Chebyshev polynomials

b+a
—k=01,...,n-1.
b_a n 3

The code [x,w]=pd(n,dom,kind) of Chebpack calculates the n Chebyshev points X of the

corresponding kind on dom as a column vector and the n quadrature weights W as a row vector
for the Clenshaw-Curtis quadrature formula

T, (X)=T,(ax+8), a :é, B

b n

[yeodx =Y wy(x)). @
a j=1

The fast conversion between the spectral representation ¢ of a function y and its physical values

V= y(;) is performed by the functions v=t2x(c, kind) and c=x2t(v, kind) based on the
Fast Chebyshev Transform.

If a function y is given by its Chebyshev coefficients ¢ and we need its values at some
points X¢ € [a,b], a conversion matrix T, is obtained from the code Tc=cpv(n,xc,dom),
where

Ty - (= 2\ z_ 2xc _b+a
TC:[?,Tl(f)...,Tn_l(f)},f—b_a o e[-1]

(5)

where E is transposed as a column vector and we have y(;c) =T, c.If T=cpv(n,x,dom)

where X are the Chebyshev points, then the matrix T performs the (non fast, but useful if
n < 256) conversion between the coefficients ¢ of the function y and the values Vv = y(X)

through the formulas v=T -c andc =T *-v.

The differentiation is discretized by a differentiation matrix D given by the code
D=deriv(n,dom). If cis the column of Chebyshev coefficients of a function y(x), then

D-cis the column of the Chebyshev coefficients of the derivative % The definition of D is

X
based on the recurrence relations
T, T, .. T, '
T, =T, T,="2T =—" 2 __ kKL _ k=23 xel-11].
o =T = T ) 2k D) -11] ©

Similarly, the code [J,JO]=prim(n,dom) calculates the integration matrix J such that the

coefficients of a primitive of y(x)are J -C.. The coefficients of the particular primitive vanishing
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at a =dom(1) are obtained by using J, .c. Another useful code is X=mult(n,dom) . Then
X -c is the column of the Chebyshev coefficients of the multiplication by the independent
variable X - y(x) for x € dom.

If L: C°°(—1,1)—> C°°(—1,1) is a linear operator then let E, U be the corresponding coefficients

of y(x)and L(y(x)). The matrix L that maps cintou=L-c isthe Chebyshev approximation

of L. Chebpack implements the Chebyshev spectral method as a Lanczos’ tau method where we
work in the spectral space of the coefficients. The linear operators of the differential or integral
problem, such as differentiation, integration, product with the independent variable or modified
argument, are discretized to their corresponding approximating matrices. The final form of the

linear problem L(y)(x) = f(x) becomes, after the discretization, a pure algebraic linear problem

in an operatorial form L-c=f with the supplementary conditions of the continuous problem

included. It is important to remark that linear operators are better represented in the spectral space
of the coefficients, while the nonlinear operators are easily handled in the physical space of the
values. All the above codes take into account a general dom, see the open access chapter Trif [3]
for more details. The basic results for the convergence of the above spectral approximations are
given by the Theorems 8.1, 8.2, and 21.1 from Trefethen [4].

3. THE FRACTIONAL OPERATORS

The Riemann--Liouville fractional integral operator of order q is defined by

1 ¢ y(t)dt
I y(t)

r(q)g (x—t)
Ifye Ll[O,b] has the spectral approximation

=, 2
y(x) ~ kz(; C Ty (B X _1} (8)

where the prime sign denotes the summation whose first term is halved, then

1 o X‘Tk(zt 1]
< dt, j =1,
0

qu(X)~— T -

F(q k=0
approximates the physical values v of qu(x) at the Chebyshev points X = (x )H

Jy(x) =

,0 1,0<x<h.
<4< @)

(9)

Consequently, the spectral approximation of J%y(x) is given by the Chebyshev coefficients

T*v=1-c,where T is given by (5), ¢ is the column vector of the coefficients of y(x) and |

is the basic integration matrix calculated in [1] by the code I=Fracbas(x,dom,q) for
0<g<l.

Many examples in [1] confirm the efficiency of this approach. But in [1] there are also examples
where this method is not suitable. Such an example is the Abel integral equation of the second
kind

y(x)+ j y(‘)‘“ 24X o)

with the exact solution Y., (X) =1— e”erfc(,/;zx). The above standard method gives for n = 64

the numerical values of the solution with an error of 1.7543x10~*and needs a computing time of
6x107°seconds. For n =512 the error becomes 2.7658x10°° for an elapsed time of 3.3
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seconds. In this case the solution Yy, (X) has singularities of lower-order derivatives and a good

approximation of it requires an excessively large value of n. Obviously, in practical applications
it is however required to approximate the fractional integrals or derivatives of such badly-behaved
functions.

If we have to solve the Abel integral equation of the first kind

I YOI _ ¢ (%), 0<q<1 xe0]

 x—1)" (11)
then let us suppose, cf. [5], that f (X) can be approximated accurately by
n-1
f(x)=x"> ‘¢ T (1-2x), 5>0.
() =x"2, eT(l-2x) 5 (12
The solution of
jgk(t)dt — x'T, (1-2%),k=0,....,n—1
=0y (13)
Is given by
-k, k,f+1
X7 T+ p) p _
g, (X) = sF o X
r(q+4) rt-q) 1 (14)
E g+ ﬂ
and, consequently,
-k, k, B+1
X" T+ B) / _
y(x) = C - sk, X
I(q+p) rt-9)i= 1 (15)
E g+ ﬂ

The above hypergeometric functions ;F, can be calculated directly by Matlab or by a recurrence

formula from [5]. Obviously, if ¢ is the column vector of the Chebyshev coefficients from (12)

then (15) is of the form y(?) =1-c , Where | is the solution matrix of dimension n from (14) and

X is the column of the Chebyshev nodes. Note that in order to eliminate the strong singularities at
the origin of this form of the solution, we must choose £ suchthat q+ #—-1>0.

A test problem is the Abel integral equation of the first kind (see [5])

X —t (16)

X

with the exact solution y,, (X) = e—erf (\/;) We put the r.h.s under the form

Jz

X

e
e —1=x-

=X g(X) (17)
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1
so that g = > f =1 and then q+ f—1>0 and we use the Chebyshev spectral approximation

for the function g(X). For n =12 the error is about 2.66x10™" and the computing time is 0.5

seconds. The Chebpack code is test_asl.m (where, for simplicity, the hypergeometric
functions are calculated directly by Matlab).

Let us return to the Abel integral equation of the second kind (10). Chebpack can handle this kind
of problems by using the formulas (13) and (14) under the form

U (1)

Yoy

where

dt = x""T, (1-2x), j=0,...,n-1, x<(0,1), g € (01), >0, (18)

_j’j!7+q+l
3F2 ’ t

1o (19)

2 .
f. (t)= ,J=0,...,n-1.
B B(g.7 +1) S

are in fact polynomials.

If we consider the equation

y(x)+/1j YO i~ t(x), xe o]

~t)

of the type (I + ﬂ,F(q)J a )y(x) = f(x), the formal solution is (see Gorenflo & Mainardi [6])

(20)

y(x) = (1 +0(q)a )" £ (x) =(| +i(—/IF(q))kaqu(x). e

An iterative form of (21) is

yo(x) = f (X),
y, (x)=-A(q)d %y, , (), k =12,...,N,

\ @)
Y09 = 3, (0.

If we consider functions f such that

n-1
f(x)—xychl 2x)=x"Y a;f, (x), 7 =0,
j=0

j=0 (23)

the code TH=convert(q,gam,x) implements the recurrence formula from [5] for the fast
computation of the hypergeometric functions in (19).

This code gives the conversion matrix TH between the two representations of f(x),

f(x)=TT-c=TH -a
(24)

where ¢ and a are the column vectors of the Chebyshev and the hypergeometric coefficients of
f , respectively, and TT is derived from the matrix T by changing the sign of the odd lines. In

each iteration (22), y,, is converted from the Chebyshev to hypergeometric form, by applying
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the corresponding formula (18) for each j - term and obtaining y, in Chebyshev series form, but

now with the factor x”*9 included. Finally, we sum the physical values of the intermediate terms
y, until ||y, || < & for some norm.

The above algorithm involves the inversion of the matrix TH and the quality of the inversion
depends on the condition number of TH . Table 1 shows the condition number of this matrix for
g =y = 0.5 compared to that of T and VVandermonde matrix V (used in calculating interpolating

polynomial coefficients directly at Chebyshev interpolation nodes).

Table 1. Condition numbers for the matrices T, TH, V

T TH (q=y=05) v

n=16 2.1662 20.3623 1.16 x10"
n=32 2.1195 42,5702 7.55%10"
n=64 2.0855 87.3065 3.83x10%

We remark that the same Chebyshev spectral method, but not in operational form and without
applications to Abel integral equations is used in Theorem 3.2 from Sugiura & Hasegawa [7]
where the uniform approximation of the fractional derivatives is also proved.

The code test_as2.m applies this procedure for ¥ = 0.5 to solve the equation (10) and gives

a numerical solution with an error of 3x10™™ for n =16 after 54 iterations and 0.01 seconds
elapsed time. This shows a strong improvement in efficiency compared to the standard method of
Chebpack.

4. NUMERICAL EXAMPLES
This section contains some examples for fractional integral equations with algebraic singularities.
Example 1. Consider the first kind Abel integral equation from [8]

X 7
J. y(® —dt=x°, xe[0]1].
2 (x—t)s (25)

7 _ .
For n=16 and S :E the code example_asl.m (similar to test_asl.m with the new

data) gives the exact solution Y, (x) = C+/x where C = 7I'(1/ 6)/(18\/;1“(2/ 3))

Example 2. Consider the second kind Abel integral equation from [9]

y(x)+j y() _dt=e {1+ rerf (V)

(26)

with the exact solution y,, (X) =e". The code example_as2.m applies twice the iterative
method separately for the right-hand side f,(x) =e” (a well behaved function, y =0) and for

f,(x)= \/;exerf (\/;) , Which is of the form \/; times a well behaved function (y = 0.5). The
superposition of the corresponding solutions Y, (X) + Y, (X) for n =8 approximates the exact

solution with an error of 6.5x107'° in 0.011 seconds elapsed time. For n =16 the error becomes
4x107* and the elapsed time becomes 0.016 seconds. Both cases needed 55 iterations in (22).

Example 3. Consider the fractional differential problem from [10]
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1
cp =0 v(0)=1q=—
y+y=0,y0)=1q > (27)

with the exact solution

y(X)E;(—&)l‘réjJrr?z)_;éJr”' (28)

The problem can be transformed to y(X) + J Ey(x) =1.

The standard procedure of Chebpack (code example_as3.m) gives for n =32 an error of
2.3x10™* after an elapsed time of 0.002 seconds. For n =512 the error becomes 9x107" after
an elapsed time of 3.15 seconds.

The improved procedure (taking into account the algebraic singularity of the solution at the
origin) example_as3_improved.m gives for n =16 an error of 6x107'° after 36 iterations
and an elapsed time of 0.014 seconds.

Example 4. Consider the nonlinear Abel type integral equation from [11], [12] obtained by
transforming a Lighthill's problem (1950) which describes the temperature distribution of the
surface of a projectile moving through a laminar layer

1

NERE(
y(x) =1- j Y’ ~dt, xe[0.1]. 29)
75 (x—t)s
According to the formula (18), we look for the solution as
1 2
y(x) = p(x) +x3q(x) + x°r(x). (30)

where p(x), q(x) and r(x) are polynomials. A small piece of program nonlin.m calculates
the physical values of the polynomials P(x), Q(x) and R(x) such that

1 2
y(x)* = P(x) +x3Q(x) + x*R(x). (31)
Next, by using the conversion matrices TH=convert(q,gam,x) P, Q and R can be written
as a combination of hypergeometric functions. The integral in (29) becomes

n-1

3> a@fQ(t)+1t3 Za“) fo (t)+t2a(2) f D)
f(X) j j=0 ’3 j=0 I3 =0 dt =

(i - t)"5

1
3

(32)

2 n- _ __ n= _ N\ n- _
= (§)5 -iaEO)Tj 1-2x) + x-iaj”Tj 1-2x) +(x)3 -iagz’Tj 1-2x)

j=0 j=0 j=0

for x = [Xl,..., xn] and f; (t) given by (19).

Finally, if we consider as unknowns the values of the polynomials p&), q(;) and r(;)

concatenated in a long column vector v with 3n entries, the above relations lead us to a nonlinear
system F(v): 0 of the form
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3

v+ f(x)-1=0,.
T

(33)

where f (}) depends nonlinearly on V. This system is then solved by Fsolve of Matlab starting

with an initial approximation of the solution as y‘o)( ) 1.

The code example_as4.m gives for n=32 and an elapsed time 0.75 seconds the value
y(1) = 0.664857230096775 while for n=64 and the elapsed time 3.62 seconds gives the

value y(1) ~ 0.664857150875165. The comparison values for this problem are the best one
from [13], y(1) = 0.6648571508 and the best one from [11], y(1) ~ 0.664859. For n=128 this
Chebpack solution is graphically compared with that from [11] and with the asymptotic series
approximation of Lighthill (see again [11]) in Fig. 1. For all these cases fsolve needs 6
iterations.

If we need an approximation on a larger interval [O,b] with b >1, then let E=;/b and

r=t/b and (29) becomes

1
2 x 3
~c7dy(br
y(bf):l——baj ¥ ) dr. (34)
o (g—c)s
2
With this small change, (33) with A :ﬁb3 instead of A4 :ﬁ gives the numerical values
V4 T

y(bg_f) of the solution on the larger interval [O,b]. The code example_as4_long.m performs

these calculations for n=128 and b=25 in 8 iterations and the numerical solution on [0,25] is in
good concordance with the asymptotic series of Lighthill [11].

1.05 T T l T
: : Chebpack
-"| ................. ................. ................. ........ " nghthl”
e B . :D|ogo

0.9
> 085
=
08
0.75

Q.7

065

Figure 1. Approximations for the Lighthill's equation

5. CONCLUSION

The Chrbyshev spectral method implemented in our package Chebpack leads to very simple and
efficient codes that can solve different kinds of problems for fractional differential equations in a
unified approach. The Chebyshev grid points are automatically clustered near the left endpoint of
the working interval but this is not enough for a good approximation if the solution has
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singularities at that point. The presented paper extends the capabilities of Chebpack to spectrally
approximate such functions with algebraic singularities. All the necessary Matlab sources for
reproducing the above tests and examples are now part of an updated version of Chebpack [2] in
the folder Examples, subfolder Fractional differential equations.
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