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Abstract: This paper studies Step Stress Accelerated Life Tests (SSALT). It is assumed that the lifetimes of
test units follow a Frechet distribution. The experiment is subjected to two types of relationship between
lifetimes and stress (linear and Quadratic). The scale parameter of the baseline distribution at a constant
stress level is assumed to have log-linear and Quadratic relationship with stress and a Khamis-Higgins
model holds. Numerical examples are presented to illustrate all the methods of inference developed here
and a comparison of the maximum likelihood estimator’s for different sample sizes is shown .The optimum
test plan specifies the optimal stress switching point which is determined by minimizing the generalized
asymptotic variance of the MLEs for the model parameters. Tables of optimum times of changing stress
level for both plans are also obtained.

Keywords: Accelerated life testing, Step-stress, Inverse Weibull distribution, Life stress relationship
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1. INTRODUCTION

Introducing a new product in market require decisions regarding reliability of the product or
service. Accelerated testing might be the recommended or required approach. Accelerated testing
is an approach for obtaining more information from a given test time than would normally be
possible. It does this by subjecting a test unit to more severe conditions than normal in order to
obtain failure modes quickly and shorten the testing period. Since higher stresses are used,
accelerated testing must be approached with caution to avoid introducing failure modes that will
not be encountered in normal use. The design of accelerated studies may include elevated
temperature, high or low humidity, intense light, or as appropriate.

More specifically Quantitative Accelerated life test (QALT) includes accelerated time and
accelerated stress. Various type of stresses include, the constant-stress ALT with an initial low
stress, some of the units may survive too long because the stress is kept at a constant level
throughout the life of test units. The second type is called step-stress ALT. Instead of holding the
stress at a constant level, this method changes the stress setting at specified times on the surviving
units. The third type is the progressive stress ALT. The stress is increased continuously (usually
increased linearly) during the test.

In quantitative accelerated life testing, the engineer is interested in predicting the life of the
product at normal use conditions. Nelson [1], Meeker and Escobar [2] and Nelson [3] provide a
significant review of the literature on how to develop optimum QALT plans. Many authors also
have provided the studies for statistical inference model for SSALT based on Cumulative
Exposure Model (CEM); e.g., see Xiong [4], Watkins [5], Zhao and Elsayed [6], Balakrishnan el
al. [7], Yeo and Tang [8], Xiong and Ji [9] and Xiong and Milliken [10]. Khamis and Higgins [11]
proposed a new model for SSALT as an alternative to the CEM, which is based on a time
transformation of the exponential CEM.
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2. PROPOSED MODEL AND BASIC ASSUMPTIONS

The following assumptions are made:

a) There are three stress levels Sy, S, and S;(S;> S,> S)).

b) Under any stress, the lifetime of test units follow a Frechet distribution.

c) The scale parameter 6; at stress level i, i=1, 2, 3 is a function of stress given by (1) or (2)
log (6:)=Bo*P:Si (D
log (6;)=Bo+p1Si + S (2)
where, By and ;<0 are unknown parameters which is estimated by the data.

d) Failures occurs according to a cumulative exposure model by Nelson[1].

Principle of cumulative exposure model, is that, the remaining life of test items depends only on
the current cumulative fraction failed and current stress regardless of how the fraction
accumulated.

According to Cumulative Exposure-Model [1] the CDF in SSALT for 3-step is given by:
Fl(t) 0<t<r

F(t)= Fz(t—rl+s1) 7, <t<r7,
E@—r+%) 7, <t<oo

So=10=0;

si(i>0) is the solution of:

Fi1(s)= Fi(ti- T11), fori=1,....k-1.

The procedure of SSALT for 3-step is as follows:

A random sample of n identical products is placed on test under initial stress level S; and run

until time 1, , and then the stress is increased to S, for items that have not fail till time reaches 1,
and then the final stress S; is given and the test continued until all products fail.

3. OPTIMUM QUADRATIC STEP-STRESS TEST
Cumulative Exposure-Model for 3-step is given by:

Fl(t) 0<t<T
F(t): Fz(t—T1+Sl) T St<1,
FS(t_TZ"'Sz) Ty <t<oo

Hence,
s1 =solution of F,(s;) = F(t))

On solving for s;, we get, s, = 11(69_2]
1
& sy =solution of F5(s;) = Fa(t2- 11+51)
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: 0
On solving for s,, we get, s, =1, (G_S}L

1

&

0, T —Tl)

Hence Probability density function for Cumulative Exposure model is given by:

B! exp[— [eil]} | 0<t<t
R G RGN
R G RN R T

The log-likelihood equation is given by:

logl = _z'l[loga b By + By + PoS?) - (o + Dlogh) - 6 exclolBy + i, + Bs? 3 logss + By + B, + B2S3) - (o + Do)+
j= j=

n,

nzz:l[ t; eXP((X(Bo +BiSy +B,S3 ))* N exp(‘*(ﬁo +BiS; +B,St ))+ e exp(ot(ﬂo +BiS; +B2S3 ))]+ Z[loglx + (B +BiS3 +B2S3) — (a+ 1) log(ts i )]
i

j=1
Zl[ 2 exploBy + BiSs + 353 )|~5% exlalpy + 1S, + 8553 e exllpy + s + 253 st explodpy + S, +Ba3)
b=
—ny7 ¢ GXP(OL(BO +BiS; + B2S§ ))

%f: - thj explalpo +15; +B:52 ) maasi® exolofpy +pis, +:57 )
ij=

+nj01y ¢ exp(ot(ﬁo +B1S; +st%))_n3°“5a eXp(“(BO *BiS2 +BZS%))+H3ME“ exp(OL(Bo S +BZS§))
+nzor ¢ exp(ot(ﬁo +BiSy + 1325%))_ n3ot eXp(a@O #BiSs + P53 )) v
alogt

B nzll [(xSl(l T exp(a(ﬁo +BS; +B,S? )))]+ nzzl S, — S, (155 - tl_a)exp(oc(ﬁo +B;S, + 5233))]
= =

—n,aS;T * exp(ot(ﬁo +BS; + [32812 ))+ nzsl 0S5 — Sy (tgj“ +1% - tga)exp(ot(po +BS; + st% ))]
i-

—1n508,1,% exp(oc([}() +BS, + stﬁ))Jr nyaS,t; % exp(a(po +B;S, +st§))= 0 4)

%“jl = le'l[as%(l — 1 exp((x(BO +BS; + st%)))]+ nzzl oS3 —aS3 (6] - r;“)exp(a@o +B;S, +B,S3 ))]
= =

~ny0Pe % explafB + B, + oSz )+ 2[06% a2 (5% 4 17 -5y explolBo + BiSs + a2
=

- 30831, exp((x(BO +B;Sy +BoS3 ))+ ny083t ¢ exp(a(ﬁo +BSy +ByS3 )) =0 (%)

6;;:2;;1 =’y %‘ltﬂa exp(oc(ﬁo +BiS; + 132512))— nyo exp(a(ﬁo +BiS + 32512))+ nyo eXP(a(ﬁo +BiS; +BaS3 ))
5 =

— 025 exp(oc(ﬁo +B,S; +B,S3 ))+ nyo’;* exp(oc(ﬁo +B,S; +B,S3 ))+ nyol exp(a(ﬁo +B1Sy +ByS3 ))

—n30’t* expla(By +B1S; +B,S3 (6)
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6;:302g1 = Z[ oSt i eXP( (Bo +B1S; +B,S7 ))]+ HZZ:I[— 0‘25353 exp((x(BO +B1Sy +B,S3 )) a’SiTy eXP(OC(Bo +BiS + BZSIZ))]
i =

+1,0°837 eXP( (Bo +BiSy +B2S2 ))+ Z[ a’S3t3]" CXP( (Bo +ByS; +B2S3 ))— a’$5ty" exp(a(ﬁo +BiSy +B,S3 ))]

+ n30’S] explaBy + BiSs + BaS3 )Irg 57+ oS3t expla(By + ByS, + B2S3)) %)

6;:302g1 = le[ a’siG exp( (Bo +BiS; +B2Si ))]Jr 2[ a’S3tf eXP( (ﬁo +BiSy + 5235)) a’Sity exp(a(ﬁo +BiS; + BZSIZ))]
3 =

+n,0 %83t * exp(a(ﬁo +BS, +PByS3 ))+ nzl[— aZS§t§f‘ exp(aﬁio +B,S; +B,S3 ))— o283 exp(ot([}o +B,S, +B,S3 ))]
i=

#0308 explolBy +B1Ss +Bo83 )z — 17 frosde® exploly +BiS, +6253 ) (®)
d*logl  *logl
oBioBy BBy
+1n,028,7¢ exp((x(ﬁo +BS, +PByS3 ))— n3025,1,% exp((xﬁfso +B;S, +B,S3 ))+ 302851, exp(otﬁ?so +BS; +B,S3 ))

~a2y 5" exlalPo + B +Ba5? - naoSieexolalpy + i, + 57
ij=

+130°8,71 % expla(By +B1Sy +B2S3 JJ-n3a7S31 exp OC(BO +B1S3 +B2S3 ©)
*logl  8*logl L -

6622§o = 5130252 - onZ;EIS? ti* eXP(Ot(Bo +B1S; +BoST ))— n,0 %871 eXP(OL(Bo +B1S; +BaST ))

+ 0783t eXP(a(ﬁo +PBiS; + stz)) n30’S31, CXP( ([30 +BiSs +B2S3 ))+ n3o’S3y CXP(G(BO +BiS3 +B2S3 ))

3078357 explalpy +1S5 +8283 - nse S explalBy +BS; + 83 ) (10)

d*logl &% logl
oB0B; OB,
+1,02S317 exp(cx(ﬁo +PB1S, +B,S3 ))— n30°831,° eXp(Ot(ﬂo +BiSy + BzS%))+ n3o’Sity* eXP(“(BO +BiS3 +B2S3 ))

+n30°8377¢ exp(ot(ﬁo +B1S, +B2S3 ))—ngotzsgl'fa eXP(Ot(Bo +B1S3 +B253 )) (ah

- 0L2§ 2813%“ exp(on(ﬁo +BS; + BZS?))f 0,083 exp((xGSO +BS; +B,S? ))
iz

Equation (6) - (11) is the elements of Observed Fisher Information matrix.

The Expected Fisher Information matrix is given by:

3 o? logl B - o? logl Bl o? logl_
By | | BiBo| | BB |
[ A2 T [ 22 T | A2 1
I=n _ 07logl E_6102g1 E_@logl
BodBr | | B | | BBy |
_Qlogl | logl| | &’logl
| OBaBo | | oBudBi| | apd ||
E _8210g1 :A:aza(L+p )+(x2b(M—2p +p )+azc(N+cp -p )
o 1 1TP2 17P2

3 o logl
opt

3 o? logl
op3

=B=a aSl L+p1)+(x2bS2(M 2p1+p2)+a cS3(N+cp1 pz)

=aq aSl L+p1)+a2bSZ(M 2p1+p2)+oc cS3(N+cp1 p2)

(12)

B19Bo OBy
8 logl
~ 320Bo
o logl
~ 0P,0B,

2
El - 6" logl =E= (xzaS%(L+p1)+(x2bS%(M -2p; +P2)+ OLZCS%(N"' cP1 _p2)
PBodPa

[ A2 2
E—a logl} E{ 0 logl} C=a2aSI(L+p1)+a2bSZ(M—2p1+p2)+(x2cS3(N+cp1—p2)

2
=E| - 0" logl =F= oczan(L + pl)+ oczbS%(M -2p + p2)+ oczcsg(N +cpy —p2)
oP19B>
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where,
o o o o o
a=0/,b=0;,c=05,p,=1/,p, =1,

L=(1+pa) exp(;pla)

M =w {exp(~p,b)+1)fp,b—pib)}
N =& lpab—pae)-(eib =Pl (0 1exp(c polt

Now, let us suppose that
n=ofa(L+p)

v =a’b(M-2p; +p,)
&=a’c(N+cp —p,)

So, (12) becomes:

C oA
B~ — A=yt
L By |
I 8210g1_ 2 2 2
E| - === | =B=nS] +yS; +£S3
Pr |
r azlogl_ 4 4 4
E[-“—>|=D=nS$] +yS3 +&S}
| ;3132 : | (13)
gl 97logl| | 07logl =C=nS; +yS, +£S;
| 8516130 ] aBOaBI
— 2 2
g~ ool gl gl p_yq2 i ysdees]
| 9B20Bo OPBoP2
— 2 2
gl 9logl|_ | 07logl =F=nS, +yS3 +£S3
| 9B20Bo PodP>

The optimum criterion here is to find the optimum stress change time t; and 1,. The log of the 100
p™ percentile of the lifetime t(So) at the design stress Sy, is given by
1

(So) = log(t,(S0) = Bo + BiSy +B,S5 + log(®;(logp) *)
The asymptotic variance multiplied by the sample size (nAVS) at the design stress Sy is then given
by

_ BD—F?+28(EF-CD)+S§ [2(B2 - Fc)+ AD+CE - (AF+ Ez)]+ sg*(AB— c2)+ So(EC - AF)

nAVl > 2 3
AED+2EF-AF -C°D-E

(14)

By differentiating (14) with respect to 1, and 1, we find their values that minimizes nAV; and
gives the optimal plan.

4. OPTIMUM LINEAR STEP-STRESS TEST

The Expected Fisher Information matrix is given by:
2 2
E{_ P 102g1} E[_ 8 logl}
o B BB || H{A c}

2 2 “lc B
E_a logl E_@ 102g1
OBooBy 0By
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| Plogl|
E| - 6[3(32)g :A:(xz(aL+bM+cN)+0L2pl(a—2b+c)+0t2p2(b—c)
E_— alegl_—B—az(aLSZ +bMS; +CN§)+0L2 (aSlz—Zb52+c 2)+a2 (b 2 ¢ 2) (15)
w | P 7 +6S3 )+ 07y bS; —¢S;
[ 6210g1— 6210g1 2 2 2
E| - =E - =C=a"(aL§ +bMS, +cNS; )+ a"p;(aS; —2bS,; +cS; )+ a"p,(bS, —¢
| 3BidPo | { PPy ( S5) 1(aSy $3) o S3)

where above notations are given by;

o o a a a
3.:91 7b2929C:e3 P =T1,P, =T,

L=(1+pa) exp(;pla)

ex (— a+ 1b)
_=Xp Pb p {(

M exp(—pzb)+1)(p2b—p1b)}

N2 &t [lpob - psz)— (pib—pic)} 1= (pyc + 1)expl= pyo)l

The log of the 100 p™ percentile of the lifetime t,(So) at the design stress Sy is given by

1
W(Sp) =1log(t,(Sy)) = By +B1So + log(0;(logp) )

The AVS is given by:

1
AV, ((8p)) = log(t, (Sy)) = AV(By +B;S +log(®; (logp) @)) =KI"'K' =K ZK' (16)

where,
" :{aﬁ/(sw a@(so)l
PBo By

and I'' is the inverse of the expected fisher information matrix .
On solving (16) the AV(y/(S,)) becomes,
C-2BS, +AS}

AC-B?
A, B and C is given by (15)

5. RESULT AND DISCUSSION

A numerical study was conducted in order to investigate the existence of the optimal stress
change points and to evaluate them as a function of varying parameters. Simulations are
conducted to investigate the performances of the MLEs through their mean square error (MSE)
for both relationships. Comparison between both plans is shown by calculating efficiencies.

Table 1 present the Maximum likelihood estimates for n=20, 60, 80,100 & 120 and their
respective Mean Square Error for both Quadratic and Linear relationship.

Table 2 gives the Asymptotic Variances and Covariance matrix.

Table 3 presents the results of optimal design of step-stress ALT for different sized samples and
finally Table 4 Compound Linear Test-Plan Efficiencies.
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Table 1. The Maximum likelihood estimate and Mean Square Error for a=3.19687¢”

Quadratic case Linear case
n Parameter Estimate MSE Estimate MSE
0, 0.364¢” 0.0763 1.635¢” 0.0945
20 0, 1.166¢* 0.0063 3.284¢™ 0.0592
0, 2.865¢* 0.0658 - -
él 0.255¢” 0.0636 1.264¢” 0.0775
60 0, 1.643¢ 0.0060 3.846¢™ 0.0570
0, 2.764¢" 0.4634 - -
0, 0.214¢*° 0.0643 1.178¢” 0.0567
%0 0, 1.543¢™ 0.0072 4.852¢" 0.0529
0, 2.543¢" 0.0055 - -
0, 0.143¢* 0.0453 5.734¢ 0.0511
100 0, 1.654¢" 0.0074 7.836¢° 0.0478
0, 2.432¢* 0.0832 . -
0, 0.171¢*® 0.0234 5.154¢° 0.0461
120 0, 1.284¢* 0.0031 7.245¢* 0.0359
0, 1.847¢ 0.0271 - -
0, 0.124¢® 0.0073 4.641¢”® 0.0256
A -8 -8
200 (?2 1.133e 0.0029 6.735¢ 0.0219
0, 1.244¢™ 0.0213 - -
Table2. Asymptotic Variances and Covariances of Estimates
n Bo B B2 Bo B
2.0625 -1.7545 1.6524 3.0862 -2.7361
20 -1.7545 1.6524 1.8635 -2.7361 1.9621
1.6524 1.8635 0.8362 - -
2.0343 -1.5643 1.3413 3.0263 -2.7141
60 -1.5643 13413 1.8472 -2.7141 1.3856
13413 1.8472 0.7356 - -
2.0193 -1.3425 1.2947 2.7251 -2.3736
80 -1.3425 1.2947 1.8635 -2.3736 1.1825
1.2947 1.8635 0.5812 - -
1.9753 -1.3418 1.2421 2.1761 -2.8362
100 -1.3418 1.2421 1.7623 -2.8362 1.1384
1.2421 1.7623 0.4321
1.9374 -1.3261 1.2763 2.1383 -2.1438
120 -1.3261 1.2763 1.5341 -2.1438 1.1172
1.2763 1.4826 0.4826 - -
1.6443 -1.3231 1.2144 2.0826 -2.0836
200 -1.3231 1.2144 1.5135 -2.0836 1.1054
1.2144 1.5135 0.4254 - -
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Table 3. The results of optimal design of step-stress ALT for different sized samples

n Bo=0.9 B;=1.5 Bo=0.9 B,=1.5 p,=2.8
nAv, T T, nAv, T T,
20 0.190 2.3 2.8 0.113 2.2 2.4
60 0.054 2.3 2.7 0.056 1.9 2.4
80 0.037 1.8 2.7 0.035 14 2.4
100 0.028 1.7 27 0.028 14 2.4
120 0.018 1.5 2.7 0.014 1.1 2.4
200 0.009 1.5 2.7 0.005 1.1 2.4
Table 4. Compound Linear Test-Plan Efficiencies
Efficiencies
Si S, S5 n Opt Linear Opt Quadratic

20 0.78 0.88

60 0.72 0.88

2.5 35 4.5 80 0.80 0.92

100 0.85 0.92

120 0.88 0.91

200 0.91 0.94

20 0.84 0.84

60 0.84 0.87

80 0.86 0.87

3.5 4.5 5.5 100 0.88 0.90

120 0.86 0.92

200 0.88 0.92

20 0.83 0.85

60 0.84 0.87

4.5 5.5 6.5 80 0.88 0.88

100 0.88 0.92

120 0.89 0.92

200 0.87 0.92

6. COMPARATIVE STUDY

In this section, the proposed Step-Stress model have been compared with the constant accelerated
life testing using geometric process by Shahab [12] in terms of maximum likelihood estimators
and their respective error in Table 1. It can be seen that the error involved in step stress is more
minimized as compared to constant stress and shows more stability of parameter. Hence Step-
Stress ALT is efficient in comparison with constant.

Table 3 shows that the proposed model performs better when stresses are increased and more
analysis are done at each step for the given data set.

7. CONCLUDING REMARKS

This paper deals with parameter estimation of Frechet distribution under 3-step stress ALT plan.
The objective is to design a test that achieves the best reliability estimates. Two types of
relationship are assumed between scale parameter and Stress. One links scale parameter linearly
with stress while other have quadratic relationship. Comparison between both is shown by
calculating estimates and their respective error. Efficiencies for both plans are calculated for
different level of stress. Apart from that the results of optimal design of step-stress ALT for
different sample size is shown.

Performance of step-stress testing plans and model assumptions are usually evaluated by the
properties of the maximum likelihood estimates of model parameters. Estimates of quadratic are
more stable with relatively small Mean Square error as sample size increases. Maximum
likelihood estimators are consistent and asymptotically normally distributed. As the sample sizes
increase the asymptotic variance and covariance of estimators decrease. In short, it is reasonable
to say that the present step stress ALT plan works well and has a promising potential in the
analysis of accelerated life testing.
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