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Abstract:  In this brief note, the classical and relativistic equations of planetary motion are studied using 

polar coordinates in a different way than the standard approach.  Conditions are then given when the 

relativistic equations yield bounded solutions. 
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1. INTRODUCTION 

In this note, a straightforward account will be given of the well-known differential equations of 

planetary motion.  However, we will discuss them using the (r,θ)coordinatesin a slightly different 

way than the usual case (see [1,  pp. 231-235] for the classicalapproach and [2, pp.471-496] for a 

thorough presentation of the behavior of a body in motion subject to a central force).  This 

discussion simplifies the analysis of these fundamental equations of celestial mechanics (see [3] 

for an excellent introduction to this field). 

2. METHODS 

The first equation is the classical Newtonian model while the second one is derived from general 

relativity (see [4, pp. 270-276] for further details).  The two equations are: 

(1) u”( θ ) + u(θ) = c(where u=1/r, r being the radius from the given object to  one of the foci 

which is the sun for the purpose of this  discussion and c is a certain positive constant) 

and 

(2) u”( θ) + u(θ) - c1 u(θ)
2
=c2(where c1 and c2 are other positive constants). 

In our discussion, we shall solve the first equation exactly and the second one implicitly by 

treating it as a two dimensional system.  This will give us some clarity into the behavior of their 

solutions. 

3. MAIN RESULTS AND DISCUSSION 

We first begin our analysis by solving equation (1) which has the general solution u=c + asin(θ) + 

bcos(θ) where a and b are constants.  Noting that u=1/r we may 

therefore conclude that r=(c+ asin(θ) + bcos(θ))
-1

 which is the general form of an ellipse, the 

planetary  

orbit.  This general solution covers all cases including the casewhen the major and minor axes of 

the ellipse are not parallel or perpendicular to the XY axes.When setting a=0, we have 

theequation of theellipse in standard formr=1/(c+bcos(θ)).  The only constraint is c+bcos(θ) ≠ 0.   

As far as equation (2) is concerned we can show directly that all solutions are bounded 

when given certain initial conditions.  First, multiply (2) by 2u’ and integrate for 0 to θ obtaining 

(3) u’( θ)
2
 + u(θ)

2
 - 2c1u(θ)

3
/3= 2c2 u(θ)-2c2 u(0) + u’(0)

2
 + u(0)

2
 - 2c1u(0)

3
/3. 

Next, using the fact that u=1/r and u’ = -r’/ r
2
and then multiplying equation (3) by r

4
 transforms  

equation (3) into 

(4) r’(θ)
2
+r(θ)

2
-2c1r(θ)/3=2c2r(θ)

3
-2c2r(θ)

4
u(0)+kr(θ)

4    
 

where   k= u’(0)
2
 + u(0)

2
 - 2c1u(0)

3
/3.  If  k-2c2u(0) < 0, then should r → ∞ the LHS of (4)  

approaches ∞ while the RHS approaches -∞ which is impossible.  In other words, the solutions 
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must remain bounded as t→∞ given these conditions.Should k-2c2u(0) ≥0, then the solutions may 

be unbounded  (note:  the equilibrium points of (2) in the (u, θ) plane correspond to regions of 

unboundedness in the (r,θ) plane).  

We could also look at equation (2) another way by transforming it into the following  

dynamical system  

(5) u’ = v 

v’ = -u + c1u
2 
 +c2. 

Then, we convert (5) into the first order differential equation, 

(6) dv/du = (-u + c1u
2 
 +c)/v.  This becomes 

(7)  v dv = (-u + c1u
2 
 +c2) du. 

Finally, integrating equation (7) from 0 to θ yields the following result 

(8)  ½(v(θ)
2
 – v(0)

2
) =  -u(θ)

2
/2 + c1u(θ)

3
/3 +c2u(θ)  +u(0)

2
/2 - c1u(0)

3
/3-c2u(0). 

Letting u = 1/r and u’= v = -r’/r
2
 again yield equation (4) after some algebraic manipulation. 

4. CONCLUSION 

Using standard methods from differential equations, the above analysis clearly gives a 

straightforward and precise analysis of planetary motionboth classical and relativistic which plays 

an important role in celestial mechanics.  
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