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Abstract: A sum graph is a graph for which there is a labeling of its vertices with positive integers so that 

two vertices are adjacent if and only if the sum of their labels is the label of another vertex. Integral sum 

graphs are defined similarly, except that the labels may be any integers. These concepts were first 

introduced by Harary, who provided examples of such graphs of all orders. The family of integral sum 

graphs  was extended to  by Vilfred who calculated number of triangles in , ,  and 

, kN andm,n . In this paper, we calculate number of cycles of length four, at first, in graphs  

and  and then using these we obtain that of and , kN andm,n . Also, we prove that for 

nN,  and  with-out vertex labels where  is the vertex with 

integral sum labeling j in  and anti-integral sum labeling j in , m = n+2 or m = n+4 and 1 ≤ j ≤ m 

and obtain a few properties of natural numbers. 
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1 INTRODUCTION 

Harary introduced the concept of sum graph in [1]. A graph G = (V,E) is a sum graphor 
N-graphif the vertices of G can be labeled with distinct positive integers so that e = uv is an edge 

of G if and only if the sum of the labels on vertices u and v is also a label in G. Harary [2] 

extended the sum graph concept to allow any integers to be used as labels. He provided examples 

of graphs of this type. To distinguish between the two types, we refer to sum graphs that use only 
positive integers as N-sum graphs and those that use any integers as Z-sum graphs[3]. For any 

non-empty set of integers S, we let G
+
(S) denote the integral sum graph on the set S. For integers r 

and s with r<s we also let [r, s] denote the set of integers {r,r+1,...,s}. Harary's examples of N-

sum graphs are thus G
+
([1,n]) =  and his Z-sum graphs are G

+
([-r,r]) =  for rN. (Note that 

his notation is modified and we write  for what he called . See [3]). Beineke, Chen, 

Harary, Kala, Mary Florida, Nicholas, Rubin Mary, Suryakala and Vilfred [1]-[14] studied 
general properties of sum and integral sum graphs. The extension of Harary graphs to all intervals 

of integers was introduced by Vilfred and Mary Florida in [8]: for any integers r and s with r<s, 

let  = ([r,s]). We denote the sum graph ([1,n]) by when it is labeled andby  when it 

is unlabeled and [k] in G
+
(S) denotes the set of all edges of G

+
(S) whose edge sum value is k, 

kS[9]. See Figures 1 and 2. 

Vilfred [7] introduced the concepts of anti-sum and anti-integral sum labeling and calculated the 

number of triangles in , ,  and kN andm,n  [6]. In this paper, we prove that 

for nN,  and  with-out vertex labels where  is 

the vertex with integral sum labeling j in , m = n+2 or m = n+4 and 1 ≤ j ≤ m; = 
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 = ; =  = ; = ; 

= ; =   +  + 3(  + ) + 2( + 

m. ) + mC2.nC2 + n.mC2 + m.nC2 + (number of s in - , each  = uvw with uwE(-

)) + (number of s in , each  = uvw with uwE( ));  =  + ; 

=  +  + mn(4mn+6(m+n) – 11); = 

 +  + m(4m-3)(2n+1) + mn(4mn+2m+6n+1);  

=  +  + mn(4mn+6m+2n+1) + (2m+1)n(4n-3) and 

=  +  + 2( ) + 

(mn+m+n)(2m+1)(2n+1) + 4mn(m+n) where  denotes number of distinct sub-graphs, each 

isomorphic to H, in graph G, 2 ≤ m,n. We obtain the following properties of natural numbers: for 

2 ≤ n and nN, 6 divides n(n+1)(7n-4), n(n+1)(7n+8) and n(7 +18n+5) and 24 divides 

n(n+1)(n+2)(7n-3), n(n+1)(n+2)(7n+1), n(n+1)(n+2)(7n+13), n(n+1)(7 +15n-10) and 

n(n+1)(7 +31n+22) [14].  

All graphs in this paper are simple graphs. For all basic notation and definitions in graph theory, 

we follow [15] and for sum and integral sum graphs, we refer to [3], [16]. Now, we consider a 
few definitions and properties of sum and integral sum graphs.   

A graphGis an anti-sum graph oranti-N-sum graph if thevertices ofGcan be labeled with distinct 

positive integers so that e = uv is an edge ofGif and only if the sum of the labels on vertices u and 
v is not a vertex label in G [7]. An anti-integral sum graph or anti-Z-sum graph is also defined 

just as anti-sum graph, the difference being that the labels may be any distinct integers. Clearly, f 

is an integral sum labeling of graph G if and only if f is an anti-integral sum labeling of . 

A graph G is a split graph if its vertices can be partitioned into a clique and a stable set. A clique 

in a graph is a set of pair-wise adjacent vertices and an independent set or stable setin a graph is a 

set of pair-wise non-adjacent vertices [17]. and are split graphs. Clearly, [1,m], [1,m+1], 

[m+1,2m], [m+2,2m+1] are cliques and [m+1,2m], [m+2,2m+1], [1,m], [1,m+1] are stable sets in 

, , , , respectively. 

Two vertices with label j and k, in a sum graph G
+
(S) with n as its maximum vertex label, are 

called supplementary vertices if j+k = n+1 and the corresponding labels are called supplementary 

labels, 1 ≤ j,k ≤ n, jk and n ≥ 2 [3]. In , E( ) = ½(n(n-1)/2 - 
n
/2), d( ) = n-1-j if 1 ≤ j ≤ 

  and d( ) = n-j if   +1 ≤ j ≤ n where x is the floor of x, V( ) = { , ,…, } and j is 

the vertex sum label of in , 1 ≤ j ≤ n and 2 ≤ n. 

Theorem 1.1 [8] If -r,sN with r < 0 <s, then = + ( + ).  □ 

Theorem 1.2 [12] Every integral sum graph G of order n, except , has at the most two vertices 
of degree n-1.      

Theorem 1.3 [12] For every n 4, there is an integral sum graph of order n with exactly two 

vertices of degree n-1. This graph is unique up to isomorphism and is denoted by .  

Theorem 1.4 [8] Form,n 2, and contain exactly one vertex of degree n and m+n, 

respectively. For 2 n, has exactly two vertices of degree n+1. is the only integral sum 

graph G having more than two vertices of degree 2.   

Theorem 1.5 [8] For 3 m+n, E( )  = ¼(m
2
+n

2
+3(m+n)+4mn)–½(

m
/2+

n
/2) where 

xdenotes the floor of x, m,n . In particular, E( ) =  - ½(
n
/2),  E( )  = 

3n(n+1)/2 - 
n
/2andE( )  = n(3n-1)/2, nN.     

Theorem 1.6 [3] Let k and n be such that 2 ≤ 2k<n.If k pairs of supplementary vertices are 

removed from (i) Harary graph , then the result is isomorphic to  without the vertex 

labelsand (ii) the graph , then the result is isomorphic to  without the vertex labels.   □ 
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Theorem1.7 [3] Forn 3, the underlying graphs of \{0,n} and are isomorphic and forn 

2r+3 andrN, the underlying graphs of \ ({0, n, n-1, n-2, ... , n-2r+1, n-2r}  ([n]  [n-1]  . 

. . [n-2r+1])) and are isomorphic.□ 

Theorem 1.8 [6] For 3 ≤ n, = + E( ) and = + E( ).    

□ 

Corollary1.9 [6] For nN, =  = and  = = 

.   □ 

Theorem 1.10 [6] Form,n , =  +  + (n+1).E( ) + (m+1).E( )  

+ mnand = + .       □ 

Corollary 1.11 [6] For m,nN, 

  (i)    = ;  

 (ii)    = ; 

(iii)    = ; 

(iv)    = ;  

 (v)   = + ; 

(vi)    = + ;  

(vii)   =  +  and 

(viii)  = + .        □ 

2 COUNTING NUMBER OF S IN  AND  

We count the number of cycles of length four in , ,  and and using these, we 

obtain the number of cycles of length four in  and , 2 ≤ k and m,n . We have 

 =  + (  + ),  = (0)  ( )  , E( )= ½(nC2 -  ), E( ) = 

½(nC2 +  ), E( ) =  = E( ) and E( ) =  = E( ) where x 

denotes the floor of x, m,n [8]. 

Theorem 2.1 For 2 ≤ n, =  = and = 

 = . 

Proof:Let V( ) = {u1,u2,…, } = V( ) where  is the vertex with sum labeling j in 

 and anti-sum labeling j in , 1 ≤ j ≤ 2n+2 and nN. At first, let us to prove the result 

for , nN. {u1,u2,…,un+1} is a clique and {un+2,un+3,…, } is a stable set to . Using 

Theorem 1.6, graph \{u1, } is isomorphic to , without the vertex labels. In , 

u1 is adjacent to u2,u3,…, ;  is an isolated vertex and  is a pendant vertex. 

Therefore, =  number of cycles of length four, each with u1 as a vertex in 

. Also, none of  and  is a vertex of any cycle of length 4 in .  

Let (u1uiujuk) be any cycle of length 4 (with u1 as a vertex) in , 1 <i,j,k< 2n+1 and i,j,k are 

all different. Under the above conditions, the following three types of C4s arise in . Type-1: 

ui,uj,uk{u2,u3,…,un+1}, Type-2: ui,uj{u2,u3,…,un+1} and uk{un+2,un+3,…,u2n} and Type-3: 

ui{u2,u3,…,un+1} and uj,uk{un+2,un+3,…,u2n}. Now, let us calculate number of C4s in  

under each type. 
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Number of s of Type-1: Here , ui,uj,uk{u2,u3,…,un+1} in . Number of ways of selecting 

3 vertices ui,uj,uk out of u2,u3,…,un+1 is nC3. There are 3 different C4s with u1, ui, uj, uk as vertices 
under type-1, namely, (u1uiujuk), (u1uiukuj) and (u1ujuiuk). Therefore, total number of C4s of type-1 

in  = 3.nC3=  . 

Number of s of Type-2: Here, ui,uj{u2,u3,…,un+1} and uk{un+2,un+3,…,u2n}. Consider all 

possible cycles, each of length 4 and with vertices u1, ui, uj and ukin . 

When k = 2n, uk = u2n is adjacent to u1 and u2 only. And under this case, u2 = ui or u2 = uj. W.l.g., 
assume u2 = ui. This implies, 2 = i< 3 ≤ j ≤ n+1. And any C4 under this case is of the form 

(u1ukuiuj) = (u1u2nu2uj), uj{u3,u4,…,un+1} and number of such C4s is {u3,u4,…,un+1} = n-1.  

When k = 2n-1, uk = u2n-1 is adjacent to u1, u2 and u3 only and thereby d(uk) = 3 = 2n+2-(2n-1). 

And any C4 of type-2 is of the form (u1u2n-1u2ux) or (u1u2n-1u3uy), ux{u3,u4,…,un+1} and 

uy{u2,u4,u5,…,un+1}. Number of such C4s is 2(n-1).  

When k = 2n-2, uk = u2n-2 is adjacent to u1 ,u2 , u3 and u4 only and thereby d(uk) = 4 = 2n+2-(2n-2). 

Therefore, number of such C4s is (4-1)(n-1) = 3(n-1). 

In general, when k = 2n+2-x and 2 ≤ x ≤ n, uk = u2n+2-xis adjacent to u1 ,u2 , . . . , ux only and 
thereby d(uk) = d(u2n+2-x) = x. And number of C4s of the form (u1u2n+2-xuiuj) is  

(x-1)(n-1) where ui{u2,u3,…,ux} and uj{u2,u3,…,un+1}\{ui}.  

Total number of C4s of type-2 in  =  = (n-1)( ) = .  

Number of s of Type-3: In this type, ui{u2,u3,…,un+1} and uj,uk{un+2,un+3,…,u2n} in , 

jk. Here, uj and uk are adjacent to u1 for every j,k{n+2,n+3,…,2n+1} in , jk. W.l.g., 
assume, j<k. If uj and uk are adjacent to ui, then j+i ≤ 2n+2 and k+i ≤ 2n+2 which implies, 

j+i<k+i ≤ 2n+2.  

For 1 ≤ x ≤ n, un+1+x is adjacent to u1,u2,…,un+1-x in  and hence d(un+1+x) = n+1-x. In , 

un+1 is non-adjacent to un+2 and u2n+1 is a pendant vertex and hence neither un+1 nor u2n+1 is a vertex 

of any C4 of type-3 in .  

When k = 2n+2-x, uk = u2n+2-x and 2 ≤ x ≤ n-1, different possibilities of ui in C4s of type-3 in 

are u2,u3,…,ux. And corresponding to each pair of ui and uk, different possible ujs are uk-1,uk-

2,…,un+2 in . Therefore, number of C4s of type-3 in  with uk = u2n+2-x is (x-1)(k-1-

(n+1)) = (x-1)(n-x). Hence, total number of C4s of type-3 in  =  = 

 = (  - = .  

When ui,uj,uk{un+2,un+3,…,u2n}, cycle C4 of the form (u1 uiujuk) doesn’t exist in  since 

{un+2,un+3,…,u2n+2} is a stable set to split graph .  

Adding all C4s in the three types, we obtain, total number of C4s in  with u1 as a vertex = 

 +  + =  , 2 ≤ n. Therefore, for 2 ≤ n,  

= (7 -18 +11n) 

                     = ((7 -18 +11n) + (7 -18 +11(n-1))) +  

                     = ((7 -18 +11n) + (7  - 18  + 11(n-1)) + . . . +  

                                                                                            (7  -18  + 11x2)) +  

                     = ((7 -18 +11n) + (7  - 18  + 11(n-1)) + . . . +  

                                                                                                     (7  -18  + 11x2)) + 0 

                     = .  

Now, let us to prove the result on . Consider, graph , nN. {u1,u2,…,un} is a stable set 

and {un+1,un+2,…,u2n+2} is a clique to split graph . Using Theorem 1.8, graph 
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\{u1,u2n+2} is isomorphic to , without the vertex labels. In , u2n+2 is adjacent to 
u1,u2,…,u2n+1 and u1 is a pendant vertex. Hence, u1 is not a vertex in any cycle of length 4 in 

. Therefore, =  number of cycles of length four, each with u2n+2 as a 

vertex in . 

Let (u2n+2 ukujui) be any cycle of length 4 in , 2 ≤ i,j,k ≤ 2n+1 and i,j,k are all different. 

Under the above conditions, the following three types of C4s arise in . Type-1: 

ui,uj,uk{un+1,un+2,…,u2n+1}, Type-2: uj,uk{un+1,un+2,…,u2n+1} and ui{u2,u3,…, un} and Type-3: 

uk{un+1,un+2,…,u2n+1} and ui,uj{u2,u3,…,un}. Now, let us calculate number of C4s in  in 
each type. W.l.g. assume that i <j<k. 

Number of s of Type-1: Here, ui,uj,uk{un+1,un+2,…,u2n+1} in . Number of ways of 

selecting 3 vertices ui,uj,uk out of un+1,un+2,…,u2n+1 is (n+1)C3. There are 3 different C4s in 

with u2n+2, ui, uj, uk as vertices under type-1, namely, (u2n+2ukujui), (u2n+2ukuiuj) and 

(u2n+2ujukui). Hence, total number of C4s of type-1 in  = 3.(n+1)C3 = . 

Number of s of Type-2: Here, uk,uj{un+1,un+2,…,u2n+1} and ui{u2,u3,…,un}. Consider all 

possible cycles, each of length 4 and with the vertices u2n+2, ui, uj and ukin . 

When i = 2, ui = u2 is adjacent to u2n+2 and u2n+1 only. And under this case, d(ui) = 2, uk = u2n+1 and 

uj = u2n,u2n-1,...,un+1. Number of such C4s is {u2n,u2n-1,…,un+1} = n.  

When i = 3, ui = u3 is adjacent to u2n+2, u2n+1 and u2n only and thereby d(ui) = 3. And any C4 of 

type-2 is of the form (u2n+2u3u2n+1ux) or (u2n+2u3 u2nuy) where ux{u2n,u2n-1,…, un+1} and 

uy{u2n+1,u2n-1,u2n-2,…,un+1}. Number of such C4s is 2n.  

In general, when i = x and 2 ≤ x ≤ n, ui = uxis adjacent to u2n+2, u2n+1,...,u2n+2-(x-1) only and thereby 

d(ui) = x and number of C4s of the form (u2n+2uiuyuz) is (x-1)n where uy{u2n+1,u2n,…,un+1} and 

uz{u2n+1,u2n,…,un+1}\{uy}.  

       Total number of C4s of type-2 in  =  = n( ) = .  

Number of s of Type-3: Here, uk{un+1,un+2,…,u2n+1} and ui,uj{u2,u3,…,un}, ij. Consider all 

possible cycles, each of length 4 and with the vertices u2n+2, uk, uj and ui in . For a given i, 2 
≤ i ≤ n-1, j takes values i+1,i+2,...,n and possible values of k are 2n+2-1,2n+2-2,…,2n+2-(i-1). 

Therefore, total number of C4s of type-3 in  =  =  = 

(n-1)(  ) - = . 

When ui,uj,uk{u2,u3,…,un}, cycle C4 of the form (u2n+2ukujui) doesn’t exist in  since 

{u2,u3,…,un} is a stable set to split graph .  

Adding all C4s in the three types, we obtain, total number of C4s with u2n+2 as a vertex in  = 

 +  + = , 2 ≤ n. Therefore, for 2 ≤ n,  

= (7 - 6 )  

             = ((7 - 6 ) + (7 -6  +  

             =  ((7 - 6 - n)+(7 -6 +...+(7 -6 -2))+  

             =  ((7 - 6  + (7 - 6  + ... + (7 - 6 - 1)). 

= , 2 ≤ n. Hence the result. 

Theorem 2.2 For 2 ≤ n, =  =  = 

and =  =  = . 
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Proof: Let V( ) = {u1,u2,…, } = V( ) where  is the vertex with sum labeling j in 

 and anti-sum labeling j in , 1 ≤ j ≤ 2n+3 and nN. At first, let us to prove the result 

for , nN. {u1,u2,…,un+2} is a clique and {un+3,un+4,…, } is a stable set to . Using 

Theorem 1.6, graph \{u1, } is isomorphicto , without the vertex labels. Also, in 

, u1 is adjacent to u2,u3,…, ;  is an isolated vertex and  is a pendant vertex. 

Therefore, =  number of cycles of length four, each with u1 as a vertex in 

. Also, none of  and  is a vertex of any cycle of length 4 in .  

Let (u1 uiujuk) be any cycle of length 4 (with u1 as a vertex) in , 1 <i,j,k< 2n+2 and i,j,k are 

all different. Under the above conditions, the following three types of C4s arise in . Type-1: 

ui,uj,uk{u2,u3,…,un+2}, Type-2: ui,uj{u2,u3,…,un+2} and uk{un+3,un+4,…,u2n+1} and Type-3: 

ui{u2,u3,…,un+2} and uj,uk{un+3,un+4,…,u2n+1}. Now, let us calculate number of C4s in  in 
each type. 

Number of s of Type-1:Here , ui,uj,uk{u2,u3,…,un+2} in . Number of ways of selecting 
3 vertices ui,uj,uk out of u2,u3,…,un+2 is (n+1)C3. There are 3 different C4s with u1, ui, uj, uk as 
vertices under Type-1, namely, (u1uiujuk), (u1uiukuj) and (u1ujuiuk). Therefore, total number of C4s 

of type-1 in  = 3.(n+1)C3 =  . 

Number of s of Type-2: Here, ui,uj{u2,u3,…,un+2} and uk{un+,un+4,…,u2n+1}. Consider all 

possible cycles, each of length 4 and with vertices u1, ui, uj and ukin . 

When k = 2n+1, uk = u2n+1 is adjacent to u1 and u2 only. And under this case, u2 = ui or u2 = uj. 
W.l.g., assume u2 = ui. This implies, 2 = i< 3 ≤ j ≤ n+2. And any C4 under this case is of the form 

(u1u2n+1u2uj), uj{u3,u4,…,un+2} and number of such C4s is n.  

When k = 2n, uk = u2n is adjacent to u1, u2 and u3 only. And any C4 of type-2 is of the form 

(u1u2nu2ux) or (u1u2nu3uy), ux{u3,u4,…,un+2} and uy{u2,u4,u5,…,un+2}. Number of such C4s is 2n.  

When k = 2n-1, uk = u2n-1 is adjacent to u1 ,u2 , u3 and u4 only and thereby d(uk) = 4. Therefore, 

number of such C4s is (4-1)n = 3n. 

In general, when k = 2n+3-x and 2 ≤ x ≤ n, uk = u2n+3-xis adjacent to u1 , u2 , . . . , ux  and thereby 

d(uk) = d(u2n+3-x) = x and number of C4s of the form (u1u2n+3-xuiuj) in  is  

(x-1)n where ui{u2,u3,…,ux} and uj{u2,u3,…,un+2}\{ui}. Therefore, total number of C4s of type-

2 in  = = ) = .  

Number of s under Type-3: Here, ui{u2,u3,…,un+2} and uj,uk{un+3,un+4,…,u2n+1} and uj and 

uk are adjacent to u1 for every j,k{n+3,n+4,…,2n+2} in , jk. W.l.g., assume, j<k. If uj and 
uk are adjacent to ui, then j+i<k+i ≤ 2n+3.  

In , un+2+x is adjacent to u1,u2,…,un+1-x, 1 ≤ x ≤ n and thereby d(un+2+x) = n+1-x. Also, un+1 and 
un+2 are non-adjacent to un+3 and u2n+2 is a pendant vertex. Hence, none of un+1, un+2 and u2n+2 is a 

vertex of any C4 of type-3 in .  

When uk = u2n+3-x and 2 ≤ x ≤ n-1, different possibilities of ui in C4s of type-3 in are u2, u3, . . 

. ,ux. And corresponding to each pair of ui and uk, different possibilities of uj are uk-1,uk-2,…,un+3 in 

. Therefore, number of C4s of type-3 in  with uk = u2n+3-x is (x-1)(k-1-(n+2)) = (x-1)(n-

x). Hence, total number of C4s of type-3 in  =  = = 

.  

Cycle C4 of the form (u1uiujuk) with ui,uj,uk{un+3,un+4,…,u2n+3} doesn’t exist in  since 

{un+3,un+4,…,u2n+3} is a stable set to split graph .  

Adding all C4s in the three types, we obtain, total number of C4s in  with u1 as a vertex = 

 +  + =  , 2 ≤ n. Therefore, for 2 ≤ n,  

= (7 -6 ) 
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                    = ((7 -6  + (7 -6  +  

    = ((7 -6 +(7 6 +...+(7 -6 +  

             = ((7 -6 +(7  - 6 +...+ (7 -6 + 0 

                    = .  

Now, let us prove the result on . Consider graph , nN. {u1,u2,…,un} is a stable set 

and {un+1,un+2,…,u2n+1} is a clique to . Using Theorem 1.6, graph \{u1,u2n+1} is 

isomorphic to , without the vertex labels. In , u2n+1 is adjacent to u1,u2,…,u2n and u1 is 

a pendant vertex. Hence, u1 is not a vertex in any cycle of length 4 in . Therefore, 

=  number of cycles of length four, each with u2n+1 as a vertex in . 

Let (u2n+1 ukujui) be any cycle of length 4 with u2n+1 as a vertex in , 2 ≤ i,j,k ≤ 2n and i,j,k are 
all different. Under the above conditions, the following three types of C4s with u2n+1 as a vertex 

arise in . Type-1: ui,uj,uk{un+1,un+2,…,u2n}, Type-2: uj,uk{un+1,un+2,…,u2n} and 

ui{u2,u3,…, un} and Type-3: uk{un+1,un+2,…,u2n} and ui,uj{u2,u3,…,un}. Now, let us calculate 

number of C4s in  in each type. W.l.g., assume that i <j<k. 

Number of s under Type-1: Here, ui,uj,uk{un+1,un+2,…,u2n} in . Number of ways of 

selecting 3 vertices ui,uj,uk out of un+1,un+2,…,u2n is nC3. There are 3 different C4s with u2n+1, ui, uj, 
uk as vertices under type-1, namely, (u2n+1ukujui), (u2n+1ukuiuj) and (u2n+1ujukui). Hence, total 

number of C4s of type-1 in  = 3.nC3=  . 

Number of s under Type-2: Here, uk,uj{un+1,un+2,…,u2n} and ui{u2,u3,…,un}. Consider all 

possible cycles (u2n+1uiujuk) in . 

When i = 2, ui = u2 is adjacent to u2n+1 and u2n only. And under this case, d(ui) = 2, uk = u2n and uj = 

u2n-1,u2n-2,...,un+1. Number of such C4s is {u2n-1,u2n-2,…,un+1} = n-1.  

When i = 3, ui = u3 is adjacent to u2n+1, u2n and u2n-1 only and d(ui) = 3. And any C4 of type-2 is of 

the form (u2n+1u3u2nux) or (u2n+1u3u2n-1uy), ux{u2n-1,u2n-2, …,un+1} and uy{u2n,u2n-2,u2n-3,…,un+1}. 
Number of such C4s is 2(n-1).  

In general, when i = x and 2 ≤ x ≤ n, ui = uxis adjacent to u2n+1, u2n,...,u2n+1-(x-1) only and thereby 

d(ui) = x and uk takes values u2n,u2n-1,…,u2n+1-(x-1) and uj{u2n,u2n-1,…, un+1}\{uk}. Therefore, 
number of C4s of the form (u2n+1uiukuj) is (x-1)(n-1), 2 ≤ x ≤ n. Here, j need not be less than k.  

       Total number of C4s of type-2 in  = = ) = .  

Number of s under Type-3: Here, uk{un+1,un+2,…,u2n} and ui,uj{u2,u3,…,un}, ij. Consider 

all possible cycles (u2n+1uiujuk) in . For a given i, 2 ≤ i ≤ n-1, j takes values i+1,i+2,...,n and 

possible values of k are 2n1,2n-1,…,2n-(i-2). Hence, total number of C4s of type-3 in  = 

 = =  - = .  

Cycle C4 of the form (u2n+1ukujui) with ui,uj,uk{u2,u3,…,un} doesn’t exist in  since 

{u2,u3,…,un} is a stable set to split graph .  

Adding all C4s in the three types, we obtain, total number of C4s with u2n+1 as a vertex in  = 

 +  + = , 2 ≤ n. Therefore, for 2 ≤ n,  

= (7 - )  

                    = ((7 -18 )+(7 -18 +  

                    = ((7 -18 )+(7 -18 + . . . +  

                                                                                                 (7 -18 +11(2)))+  
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    = ((7 -18 )+(7 -18 +...+(7 -18 +11)). 

    = . The rest of the result follows from Theorem 2.1.        □ 

Lemma 2.3 Let V( ) = {v1,v2,…,vn} = V( ) where vj is the vertex with integral sum labeling j 

in  and anti-integral sum labeling j in , 1 ≤ j ≤ n and nN. Then,  

(i) , (ii) , (iii) + and 

(iv) , without the vertex labels. 

Proof :(i) We have = ), m,n . Therefore, = , nN. Let 

V( ) = {u0,u1,u2,…,un} and V( ) = {v1,v2,…,vn+2} where ui is the vertex with integral sum 

labeling i for i = 0,1,…,n and vj is the vertex of  with integral sum labeling j, 1 ≤ j ≤ n+2. 

Define f: V( )  such that f(ui) = vi+1 and f((u,v)) = (f(u),f(v)) for every 

(u,v)E( ), i = 0,1,…,n. Now, (ux,uy)E( ) if and only if 0 <x+y<n+1 if and only if 2 < 

(x+1)+(y+1) <n+3 if and only if (vx+1,vy+1) = (f(ux),f(uy))E( ) = { ). This 

implies, f is a bijective mapping and preserves adjacency. Hence, , without the 

vertex labels.   

(ii) Using (i), we obtain,  

, without the vertex labels, nN. 

(iii) Using (ii), we obtain,  

, without the vertex labels, nN. 

(iv) We have = ) = , without the vertex 

labels, using (i), nN. Let V( ) = {u0,u1,u2,…,un+1} and V( ) = {v1,v2,…, vn+4} where ui is 

the vertex with integral sum labeling i for i = 0,1,…,n and un+1 is the vertex with integral sum 

labeling -1 in  and vj is the vertex of  with integral sum labeling j, 1 ≤ j ≤ n+4. Using 

Theorem 1.6, graph \{v1,v2,vn+3,vn+4} is isomorphic to , without the vertex labels. And so 

(( \{vn+4,vn+3,v2,v1}) + ) + without the vertex labels. Define f : V( )V(

) such that f(u0) = v1, f(un+1) = v2, f(ui) = vi+2 for i = 1,2,…,n and f((u,v)) = (f(u),f(v)) 

for every (u,v)E( ). Now, let us consider images of edges incident at each point u0 and un+1, 

separately. In , integral sum labeling of u0 and un+1 are 0 and -1, respectively, u0 and un+1 are 

adjacent and each one is adjacent to uj for j = 1,2,…,n. Now, f( (0), ui)) = f((u0, ui)) = (f(u0), 

f(ui)) = (v1,vi+1)E( ) for every i since 1+(i+1) ≤ n+2, i = 1,2,…,n;  

f(( (0),un+1)) = f((u0,un+1)) = (f(u0),f(un+1)) = (v1,v2)E( ) and f((un+1,uj)) = 

(f(un+1),f(uj)) = (v2,vj+2)E( ) for every j, j = 1,2,…,n. Therefore, f is a bijective 

mapping preserving adjacency and hence, , without the vertex labels.  
 

Result 2.4 [Algorithm to generate and ] 

Starting with either or and using results (ii) and (iii) of Lemma 2.3 for n = 2,4,… or n = 

3,5,…, one can generate sum graphs and anti-sum graphs of any order without using 

definitions of sum and anti-sum labeling.   

Theorem 2.5 FornN,  = = n + ,  = -1 = 2n+1+ 

,  = ,  = , = and = 

. 

Proof: Result follows from Lemma 2.3.                      □ 

Theorem 2.6 FornN, =  = , =  = 

, =  = and  =  = 

. 

Proof:Result follows from Theorems 2.2 and 2.5.       □ 
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Theorem 2.7 Number of s in  such that each  = uvwwithuwE( ) is , 

u,v,wV( ) and number of s in such that each  = uvw with uwE( ) is , 

u,v,wV( ) and nN. 

Proof: Let V( ) = {u1,u2,…,u2n} where uj is the vertex of  with sum labeling j, j = 1,2,…,2n. 

{u1,u2,…,un} is a clique and {un+1,un+2,…,u2n} is a stable set to split graph  and vertex un is 

non-adjacent to un+1,un+2,…,u2n. Each required P3 in  contains at least one element of 

{un+1,un+2,…,u2n-1}. In , counting of P3s such that each P3 = uvw and uwE( ) is done as 

follows, u,v,wV( ). W.l.g., assume that 1 ≤ i<j< 2n-k ≤ 2n-1. For 1 ≤ k ≤ n-1, vertex u2n-k is 

adjacent to vi for i = 1,2,…,k and P3 = u2n-kuiuj is a required path on the  3 vertices for j = 

k+1,k+2,…,2n-k-1. Therefore, in , number of s such that each  = uvw with uwE( ) 

and u,v,wV( ) =   =  =  - 

 = .  

Similarly, let V( )= {u1,u2,…,u2n} where uj is the vertex of  with sum labeling j, j = 

1,2,…,2n+1. {u1,u2,…,un+1} is a clique and {un+2,un+3,…,u2n+1} is a stable set to split graph  

and vertex un+1 is non-adjacent to un+2,un+3,…,u2n+1. Each required P3 in  contains at least 

one element of {un+2,un+3,…,u2n}. In , counting of P3s such that each P3 = uvw and 

uwE( ) is done as follows, u,v,wV( ). W.l.g., assume that 1 ≤ i<j< 2n-k ≤ 2n. For 1 ≤ 
k ≤ n-1, vertex u2n+1-k is adjacent to vi for i = 1,2,…,k and P3 = u2n+1-kuiuj is a required path on the  

3 vertices for j = k+1,k+2,…,2n+1-k-1. Therefore, in , number of s such that each  = 

uvw with uwE( ) and u,v,wV( ) =  =  = 

 -  = . Hence the result.  □ 

Theorem 2.8 For 2 ≤ m,n, (i) =  +  + mC2.nC2 + number of s with as 

a vertex in  =  +  + 3(  + ) + 2( + m. ) + 

mC2.nC2 + n.mC2 + m.nC2 + (number of s in - , each  = uvwwithuwE(- )) + (number 

of s in , each  = uvwwithuwE( )) and (ii)  =  + . 

Proof: We have  =  + (  + ) =  + (  ) and  = (0)  

((- )  ) where the vertices of are vertices of (- ) , m,n . Here,  is the vertex 

with integral sum label 0 and adjacent to all other vertices in  and an isolated vertex in 

.Clearly, = +  since and  are disjoint subgraphs in . 

Now, C4s in (-   ) = (C4s in - ) (C4s in )  (C4s in ) and = 

number of C4s, each C4 with  as a vertex in  + number of C4s, each C4 without  as a 

vertex in  =  +  +  + number of s with  as a vertex in  =  

 +  + mC2.nC2 + number of s with  as a vertex in  since  is a 

complete bipartite graph and number of C4s in  is mC2.nC2, 2 ≤ m,n.. 

Let V( ) = {uo,u1,u2,…,um+n} where, in = + ((- )+ ), u0 is the vertex  with 

integral sum labeling 0, ui is the vertex of -  with integral sum labeling -i for i = 1,2,…,m and 

um+j is the vertex of  with integral sum labeling j, j = 1,2,…,n. Let 1 ≤  

i<j<k≤ m+n and (u0uiujuk) be any cycle of length 4 with u0 as a vertex in . The 

following types of C4s with u0 as a vertex arise. Type-1: ui,uj,ukV(- ); Type-2: ui,uj,ukV( ); 

Type-3: ui,ujV(- ) and ukV( ) and Type-4: uiV(- ) and uj,ukV( ). Let us obtain 

number of C4s with  as a vertex in  in each type. 

Number of s under Type-1: Here, ui,uj,ukV(- ). In this case, C4 is formed in  with 

vertices u0, ui, uj and uk, either (uiujuk) is a cycle of length 3 in -  or uiujuk is a path of length 2 in 

 with uiukE(- ). When (uiujuk) is a cycle of length 3 in - , possible type-1 C4s in  

with vertices u0,ui,uj,uk are (u0uiujuk), (u0uiukuj) and  

(u0ujuiuk).Hence, number of C4s in  with vertices u0,ui,uj,uk when (uiujuk) is a cycle of length 

3 in -  = 3. . Similarly, when uiujuk is a path of length 2 in -  and uiukE(- ), then 
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the only possible type-1 C4 in  with vertices u0,ui,uj,uk is  

(u0uiujuk).Thus, number of C4s in  with vertices u0,ui,uj,uk when uiujuk is a path of length 2 in 

-  but uiuk is not an edge of -  =  number of s in - , each  is not a subgraph of any C3 of 

- . Hence, number of C4s of type-1 in  = 3. + number of s in -  such that each 

 is not a subgraph of any C3 of - . 

Number of s under Type-2: Here, ui,uj,ukV( ). Similar to type-1 and we obtain, number of 

C4s of type-2 in  = 3.  + number of s in  such that each  is not a subgraph of 

any C3 of . 

Number of s under Type-3: Here, ui,ujV(- ) and ukV( ). In this case, C4 is formed in 

 with vertices u0,ui,uj,uk such that either ui and uj are adjacent or ui and uj are non-adjacent 

whereas uk takes all vertices of . When ui and uj are adjacent, possible C4s of type-3 in  

with vertices u0,ui,uj,uk are (u0uiujuk), (u0uiukuj) and (u0ujuiuk).Therefore, number of C4s of type-3 

in  with vertices u0,ui,uj,uk when ui and uj are adjacent = 3. .(number of vertices of 

) = 3n. . Similarly, when ui and uj are non-adjacent, the only possible type-3 C4 in 

 with vertices u0,ui,uj,uk is  

(u0 uiukuj).Number of non-adjacent pair of vertices in -  = mC2 -number of adjacent pair of 

vertices in -  = mC2 - . Hence, number of C4s of type-3 in  with vertices 

u0,ui,uj,uk when ui and uj are non-adjacent = n(mC2 - ). Therefore, number of C4s of 

type-3 in  = number of C4s of type-3 in  with vertices u0,ui,uj,uk when ui and uj are 

adjacent  + number of C4s of type-3 in  with vertices u0,ui,uj,uk when ui and uj are non-

adjacent = n(mC2 + 2. ).  

Number of s under Type-4: Here, uiV( ) and uj,ukV( ). Similarly, we obtain, number 

of C4s of type-4 in  = m(nC2 + 2. ). Therefore, for 2 ≤ m,n,  

       Number of C4s in =  

= number of C4s of type-1 in  + number of C4s of type-2 in  

                         + number of C4s of type-3 in  + number of C4s of type-4 in  

                   =   +  + mC2.nC2 + 3  + 3  

                    + number of s in -  such that each  is not a subgraph of any C3 of -  

                    + number of s in  such that each  is not a subgraph of any C3 of  

                       + n(mC2 + 2 ) + m(nC2 + 2 ). Hence the result. □ 

Corollary 2.9 For m,nN,  

  (i)  =  +  + mn(4mn + 6(m+n) – 11); 

 (ii)  =  +  +   

                                                                             + m(4m-3)(2n+1) + mn(4mn+2m+6n+1); 

(iii) =  +  

                                                                             + (2m+1)n(4n-3) + mn(4mn+6m+2n+1); 

(iv) =  +  

                                                      + (mn+m+n) (2m+1)(2n+1) + 4mn(m+n) + 2( ); 

(v)  = + ; 

 (vi)  = + ; 

 (vii) =  + and 
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(viii) =  +  . 

Proof: For m,nN, using Theorems 1.5, 2.1, 2.2, 2.7, 2.8 and Corollary 1.11, we obtain, (i) 

=  +  + 3(  + )  

                  + 4(n.  + m. ) + 2mC2.2nC2 + 2n.2mC2 + 2m.2nC2 

                  + number of s in -  such that each  is not a subgraph of any C3 of -  

                  + number of s in  such  that each  is not a subgraph of any C3 of . 

 =  +  + 3(  + ) +4mn(m-1) 

 + 4mn(n-1) + mn(2m-1)(2n-1) + 2mn(2m-1) + 2mn(2n-1) +  +  

 =  +  + mn(4mn + 6(m+n) – 11). 

(ii) = + +3( + ) + 2((2n+1)  

                                          +2m. )+2mC2.(2n+1)C2+(2n+1).2mC2+2m.(2n+1)C2 

               + number of s in -  such that each  is not a subgraph of any C3 of -  

               + number of s in  such that each  is not a subgraph of any C3 of  

               =  +  + (m-2)(m-1)m  +  

                               + 2(2n+1)(m-1)m + 4m  + m(2m-1)(2n+1)n + (2n+1)m(2m-1)  

                                                               + 2m(2n+1)n +  +  

           =  +  + m(4m-3)(2n+1) + mn(4mn+2m+6n+1). 

       Similarly, we obtain, 

(iii) =  +  

                                                                             + (2m+1)n(4n-3) + mn(4mn+6m+2n+1). 

(iv) = + + 3( + )  

                                 + 2( + (2m+1). )  

                                 + (2m+1)C2.(2n+1)C2 + (2n+1).(2m+1)C2 + (2m+1).(2n+1)C2 

     + number of s in -  such that each  is not a subgraph of any C3 of -  

+ number of s in  such that each  is not a subgraph of any C3 of  

           =  +  +  +  

                                + 2(2n+1)  + 2(2m+1)  + (2m+1)mn(2n+1)  

                                + (2n+1)(2m+1)m + (2m+1)(2n+1)n +  +  

            =  +  

                                             + 2( ) + (mn+m+n)(2m+1)(2n+1). 

Results (v) – (viii) follow from   = (0) ( )   and using Theorem 2.2. 

Any property of natural numbers is interesting and important. From Theorems 2.1, 2.2, 2.6 and 

Corollary 2.9, we obtain the following simple properties of natural numbers. 

Theorem 2.10 For 2 ≤ n, n(n+1)(7n-4), n(n+1)(7n+8) and n(7 +18n+5) are divisible by 6 and 

n(n+1)(n+2)(7n-3), n(n+1)(n+2)(7n+1), n(n+1)(n+2)(7n+13), n(n+1)(7 +15n-10) and 

n(n+1)(7 +31n+22) are divisible by 24, m,nN.  

Proof: Result follows from Theorems 2.1,2.1,2.9, 2.1, 2.1, 2.1, 2.9 and 2.9, respectively.□ 
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