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Abstract: A sum graph is a graph for which there is a labeling of its vertices with positive integers so that
two vertices are adjacent if and only if the sum of their labels is the label of another vertex. Integral sum
graphs are defined similarly, except that the labels may be any integers. These concepts were first
introduced by Harary, who provided examples of such graphs of all orders. The family of integral sum
graphs G_,, ,, was extended to G_,, ,, by Vilfred who calculated number of triangles in G, G%,G_,,, and
GSnn, KeN andm,nel,. In this paper, we calculate number of cycles of length four, at first, in graphs G,
and G, and then using these we obtain that of G_,, ,and G<,, ,, keN andm,neN,. Also, we prove that for
NEN,Go = Gpip\{Uns2} AN G_1 , 2G4 4\ {Upi3, Ui 4} With-out vertex labels where v; is the vertex with
integral sum labeling j in G,, and anti-integral sum labeling j in G5, m = n+2 orm = n+4 and 1 <j <m
and obtain a few properties of natural numbers.
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1 INTRODUCTION

Harary introduced the concept of sum graph in [1]. A graph G = (V,E) is a sum graphor
N-graphif the vertices of G can be labeled with distinct positive integers so that e = uv is an edge
of G if and only if the sum of the labels on vertices u and v is also a label in G. Harary [2]
extended the sum graph concept to allow any integers to be used as labels. He provided examples
of graphs of this type. To distinguish between the two types, we refer to sum graphs that use only
positive integers as N-sum graphs and those that use any integers as Z-sum graphs[3]. For any
non-empty set of integers S, we let G*(S) denote the integral sum graph on the set S. For integers r
and s with r<s we also let [r, s] denote the set of integers {r,r+1,...,s}. Harary's examples of N-
sum graphs are thus G*([1,n]) = G,, and his Z-sum graphs are G*([-r,r]) = G_,.,. for reN. (Note that
his notation is modified and we write G_,., for what he called G, ,. See [3]). Beineke, Chen,
Harary, Kala, Mary Florida, Nicholas, Rubin Mary, Suryakala and Vilfred [1]-[14] studied
general properties of sum and integral sum graphs. The extension of Harary graphs to all intervals
of integers was introduced by Vilfred and Mary Florida in [8]: for any integers r and s with r<s,
let G, s = G*([r,s]). We denote the sum graph G *([1,n]) by G, when it is labeled andbyG,, when it
is unlabeled and [k] in G*(S) denotes the set of all edges of G*(S) whose edge sum value is k,
keS[9]. See Figures 1 and 2.

Vilfred [7] introduced the concepts of anti-sum and anti-integral sum labeling and calculated the
number of triangles in Gy, G%,G_p, , and G, ,, keN andm,ne N, [6]. In this paper, we prove that
for neN,Go n=Gpio\ {Un+2} aNd G_1 ,=Grys\ {Un+3 , Unsa} With-out vertex labels where w; is
the vertex with integral sum labeling j in G,,, m=n+2orm =n+4 and 1 <j<m;[C,
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(n—-1)n(n+1)(7n-10) _ . _ (n-Dnn+1)(7n+6) _ . _ i
o =1Cd ge , 1 1€y 6,000= ” =1Clge i 1C4 60,7 1€l 0

[Cylo_,=1C4 6o |C4| Gomn= 1Can +1CYg, +3(1CH, + |C3| o) 2l EGm)| +
m.| E(G,)|) + mC,.nC, + n.mC, + m.nC, + (number of P;s in -G,,, each Py = uvw with uweE(-
Gn)) + (number of P3s in Gy, each Py = uvw with uwgE(G,)); | Cyl e, = 1Cyl ge +1C4f ge;
_ (m-1)m(7m?+m-18) (n—l)n(7n2+n—18) ,

1Cyl 6 pmon= o ” + mn(@mn+6(m+n) — 11); | Cyl s, . =
(m— 1)m(72711 tm-18) (n—1)n(7;14+17n—2) + m(4m-3)(2n+1) + mn(4mn+2m+6n+1); |C4| G- ominym
— 2 _ _ 2 _
S Dm”; men o, 1)”(722 719 4+ mn@mn+6m+2n+1) + (2m+1)n(4n-3) and
(m- 1)m(7m2+17m 2) (n—-1D)n(7n?+17n-2)
|C4| G_ (2m+1), 2n+1 + 24 + 2(m +n ) +

(mn+m+n)(2m+1)(2n+1) + 4mn(m+n) where | Hl ; denotes number of distinct sub-graphs, each
isomorphic to H, in graph G, 2 < m,n. We obtain the following properties of natural numbers: for
2 < n and neN, 6 divides n(n+1)(7n-4), n(n+1)(7n+8) and n(7n?+18n+5) and 24 divides
n(n+1)(n+2)(7n-3), n(n+1)(n+2)(7n+1), n(n+1)(n+2)(7n+13), n(n+1)(7n?+15n-10) and
n(n+1)(7n?+31n+22) [14].

All graphs in this paper are simple graphs. For all basic notation and definitions in graph theory,
we follow [15] and for sum and integral sum graphs, we refer to [3], [16]. Now, we consider a
few definitions and properties of sum and integral sum graphs.

A graphGis an anti-sum graph oranti-N-sum graph if thevertices ofGcan be labeled with distinct
positive integers so that e = uv is an edge ofGif and only if the sum of the labels on vertices u and
v is not a vertex label in G [7]. An anti-integral sum graph or anti-Z-sum graph is also defined
just as anti-sum graph, the difference being that the labels may be any distinct integers. Clearly, f
is an integral sum labeling of graph G if and only if f is an anti-integral sum labeling of G*.

A graph G is a split graph if its vertices can be partitioned into a clique and a stable set. A clique
in a graph is a set of pair-wise adjacent vertices and an independent set or stable setin a graph is a
set of pair-wise non-adjacent vertices [17]. G,andGgSare split graphs. Clearly, [1,m], [1,m+1],
[m+1,2m], [m+2,2m+1] are cliques and [m+1,2m], [m+2,2m+1], [1,m], [1,m+1] are stable sets in
Gom» Goms1r G5 G5m+1, TESPECtively.

Two vertices with label j and k, in a sum graph G*(S) with n as its maximum vertex label, are
called supplementary vertices if j+k = n+1 and the corresponding labels are called supplementary
labels, 1 <jk <n, j=k and n>2 [3]. In Gy, | E(G,) | = %(n(n-1)/2 - ")), d(v;) = n-1jif 1 <j <
L"T”J and d(v;) = n+j if L”T”J +1 <j < n where [x] is the floor of X, V(G,) = {v4,Vs.....v,} and j is
the vertex sum label of v;in G,, 1 <j<nand 2 <n.

Theorem 1.1 [8] If -r,seN with r <0 <s, thenG, = K;+ (G_,+Gs). O

Theorem 1.2 [12] Every integral sum graph G of order n, except K3, has at the most two vertices
of degree n-1. O

Theorem 1.3 [12] For every n> 4, there is an integral sum graph of order n with exactly two
vertices of degree n-1. This graph is unique up to isomorphism and is denoted by G \,,.

Theorem 1.4 [8] Form,n> 2, G, ,andG_,, ,contain exactly one vertex of degree n and m+n,
respectively. For 2 <n, G_; ,has exactly two vertices of degree n+1. G_, ;is the only integral sum
graph G having more than two vertices of degree 2. [

Theorem 1.5 [8] For 3 <m+n, |E(G_pmn) | = Ya(m*+n®+3(m-+n)+4mn)-4("/, 1+ ", ]) where
| xdenotes the floor of x, m,neN,. In particular, | E(G,) | = M - (")), 1EG_pn) | =
3an(n+1)/2 - "/, Jand E(G_(n-1y»)| =n(3Bn-1)/2, neN. ©

Theorem 1.6 [3] Let k and n be such that 2 < 2k<n.If k pairs of supplementary vertices are

removed from (i) Harary graph G,, then the result is isomorphic to G,_,;, without the vertex
labelsand (ii) the graph G, then the result is isomorphic to G5 _,, without the vertex labels. o
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Theorem1.7 [3] Forn> 3, the underlying graphs ofG, ,,\{0,n} andG, ,_,are isomorphic and forn>
2r+3 andreN, the underlying graphs ofG, ,,\ ({0, n, n-1, n-2, ..., n-2r+1, n-2r} U ([n] U [n-1] U .
.. U[n-2r+1])) andGy ,, o, are isomorphic.o

Theorem 1.8 [6] For 3 <n, [ Cql o =1 Cql g+ E(Gnoz)l and | Cql ge=Col g+ [EGE_,)l.

0
Corollary1.9 [6] For neN, |C5l, = (”_1)"# =[Cql g and Cql g, = w:
2n+2

Theorem 1.10 [6] FormneNo, | C3l  =1Cql ¢ +1Cql ¢, + (M+1)EGp)l + (M+1).[E(Gp) |
+mnand| Cgl ge, =1Cql ge+1Cql g O
Corollary 1.11 [6] For m,neN,

i | C3| G_2m2n=§(m +n)(m? + 5mn +n? —1);

(i) | C3| Gy ames™ %(Z(m3 +n®) + 12mn(m + n) + 3(2m? + n? + 4mn) + 4m + n);

(iii) | C3| G_mm)zn:%(Z(m3 +n3) + 12mn(m + n) + 3(m? + 2n? + 4mn) + m + 4n);

(iv) | C3| G—(2m+1)2n+1:%(m +n)(2(m +n)? +9(m+n) + 6mn+ 13) + mn + 1;

_ (m-1)m(2m-1), (n-1)n(2n-1),

(V) | C3| Goman~ 6 ' 6 J

. _(m-1)m@2m-1), (n-n(n+1),
(vi) | C3‘ Glomans1 6 ' 3 '
(Vii) ‘ Cg‘ . - (m-1)m(m+1) + (n-1)n(2n-1) and

—(2m+1),2n 3 6

_ (m-1)m@m+1)  (n-D)n(n+1)

(viii) ‘ C3‘ Gf(zm+1),2n+1_ 3 ' 3 ’ =

o COUNTING NUMBER OF €4S IN G,, AND G _,, ,

We count the number of cycles of length four in Gy, Goryq, G55 and G3,,,and using these, we
obtain the number of cycles of length four in G_,,, and G, ,, 2 < k and m,neN,. We have
Gomn = Ky + (=Gm) + Gn), GEmn = K1(0) U (—G) UGS, |E(Gn) [=2%(nC,- [2)), [E@GS) | =
Y(nC, + L2)), |E(Gyn) | =n2—n = |E@GS,-1)| and |E(G,y) | = n? = |E@GS,) | where |x]
denotes the floor of x, m,neN,[8].

(n-Dn(7n-11) _ (n-1)n(n+1)(7n-10)
6 B 24

Theorem 2.1 For 2 <n, | ¢, N | c,l e T and| ¢, o ,,=
(n—-Dn(7n+1) _ (n-)nn+1)(7n+6)

6 24

[Cal o5, +

Proof:Let V(Gn+2) = {UnUz,....Uzn12} = V(GS,42) Where u; is the vertex with sum labeling j in
Gyn+2 and anti-sum labeling j in G5,,4,, 1 <j <2n+2 and neN. At first, let us to prove the result
for G142, NEN. {Ug,Uy,...,Un} is a clique and {Un+2,Unss,- . ., Uz 42 } IS @ Stable set to G,,45. Using
Theorem 1.6, graph G,,,4+2MU1, Uz 42} IS iSOMorphic to G,,,, without the vertex labels. In G545,
u; is adjacent to Up,Us,...,Usn41; U2nez IS an isolated vertex and u,,.; IS a pendant vertex.
Therefore, | C,l Comes™ | Cyl s,, T number of cycles of length four, each with u; as a vertex in
Gyn+2. Also, none of u,, 4 andu,, ., is a vertex of any cycle of length 4 in Gy,,45.

Let (usuiujue) be any cycle of length 4 (with u; as a vertex) in Gy,42, 1 <i,j,k< 2n+1 and i,j,k are
all different. Under the above conditions, the following three types of C,s arise in Gy, 5. Type-1:
Ui, Uj,Uge{U2,Us,...,.Uns1}, Type-2: ujuje{uzUs,...,Uns1} and Uge{Unsz,Unss,...,Un} and Type-3:
uie{Uz,Us,...,Uns1} and Uj,uxe{Unsz,Unss,...,U2n}. NOw, let us calculate number of Cus in Gupy2
under each type.
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Number of C4s of Type-1: Here , uj,uj,uxe{Uz,Us,...,Uns1} IN G2 Number of ways of selecting
3 vertices U;,u;, Uk out of Uy,Us,...,Uns IS NCs. There are 3 different C,s with uy, U, uj, Uy as vertices
under type-1, namely, (uiuiujuy), (usuiuku;) and (uqujuiug). Therefore, total number of C,s of type-1

in Gypyp =3.nCs= w

Number of C4s of Type-2: Here, u;uje{uy,Us,...,Uns1} and uge{Unsz,Unss,...,Uzn}. Consider all
possible cycles, each of length 4 and with vertices uy, u;, ujand uin Gop,42.

When k = 2n, ux = uy, is adjacent to u; and u, only. And under this case, u, = u; or u, = u;. W.L.g.,
assume U, = u;. This implies, 2 = i< 3 <j < n+l. And any C, under this case is of the form
(UsUUit;) = (UsUzUaly), Uje{Us,Us,...,Uns1} and number of such Cys is | {Us,Us,...,Upss} = n-1.

When k = 2n-1, ux = Uy, is adjacent to us, U, and uz only and thereby d(uy) = 3 = 2n+2-(2n-1).
And any C, of type-2 is of the form (UjUznaUzUx) OF (Uslzp.qUsUy), Uxe{Us,Us,...,Uns1} and
Uye{Upz,Ug,Us,...,Uns1}. Number of such C,s is 2(n-1).

When k = 2n-2, Uy = Ux,-2 is adjacent to ug ,u, , uz and uy only and thereby d(uy) = 4 = 2n+2-(2n-2).
Therefore, number of such C,s is (4-1)(n-1) = 3(n-1).

In general, when k = 2n+2-x and 2 < X < N, Ux = Uxe24IS adjacent to u; Uy, . . ., Ux only and
thereby d(uy) = d(Uzs2«) = X. And number of C,s of the form (UiUznoUilly) IS
(x-1)(n-1) where uje{uy,Us,...,u} and u;e{uy,Us,. . ., Una P\{Ui}.

_ n(n-1)?

Total number of Cys of type-2 in Gop4z = 2i_(x — DD(n—1) = (n-1)(XRZ1 x) .

Number of C4s of Type-3: In this type, uie{uz,Us,...,Uns1} @nd Uj,UcE{Uns2,Unss,. . .,Uan} IN Goppya,
j#k. Here, u; and u, are adjacent to u; for every jke{n+2,n+3,....2n+1} in Gpn42, j2k. W.LG,,
assume, j<k. If u; and u are adjacent to u;, then j+i < 2n+2 and k+i < 2n+2 which implies,
jHi<k+i <2n+2.

For 1 <X <N, Un:+14 IS adjacent to Ug,Up,...,Uns1x IN Gopyp and hence d(Unsisx) = N+1-X. IN Goppya,
Uns+1 IS NON-adjacent to U,+, and U,n+g is a pendant vertex and hence neither up.; NOr Ugneg IS @ Vertex
of any C, of type-3in Gyp4».

When k = 2n+2-X, Ux = Ux+2x and 2 < X < n-1, different possibilities of u; in Cs of type-3 in
Gan+2ar€ Up,Us,...,Ux. And corresponding to each pair of u; and uy, different possible u;s are uy.y,Ux
2,.-.Uns2 IN Gopyo. Therefore, number of Cus of type-3 in Gyppo With Ug = Upnaayx is (X-1)(k-1-
(n+1)) = (x-1)(n-x). Hence, total number of C,s of type-3 in Gypip = DRzl —x)(x—1) =

SE2(n — 1 - 2)x = (n— (S22 x) - $io? 2= ROV

When u;,uj,ux€{Un+2,Uns3,...,Uz}, cycle C, of the form (u; uiujuy) doesn’t exist in Gp,4o SiNCE
{Un+2,Unss,. . .,Uan+o} IS @ Stable set to split graph G, 4.

Adding all C,s in the three types, we obtain, total number of C,s in Gy, With u; as a vertex =
— — _1\2 _ _ _ B
n(n 12)(n 2, n(n2 D7, n(n 12(n 2)_ @ 1)n27n 11)’ 2 <n. Therefore, for 2 <,

_ 1
[Cil g, =1Cl g +(7n3-18n2+11n)

= %((7n3—18n2+11n) +(7(n — 1)3-18(n — 1)2+11(n-1))) + | ¢4l Gon

2
= %((7n3-18n2+11n) + (Tn—=1)3 - 18m—1)2 + 11(n-1) + . . . +
(7.23 -18.2% + 11x2)) + | ¢, G,

= ((Tn-18n%+11n) + (I(n—1)° - 18(n—-1)2 + 1U(-1) + . . . +
(7.23 -18.2% + 11x2)) + 0

_ (n-1)n(n+1)(7n-10)
- 24 :

Now, let us to prove the result on G5, ,. Consider, graph G5, ,,, neN. {u,u,,...,un} is a stable set
and  {Un+1,Uns2,...,Une2} IS @ clique to split graph G5,.,. Using Theorem 1.8, graph
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G5n2\{Us, U2} IS isomorphic to G5,,, without the vertex labels. In G5, .., Ux+2 iS adjacent to
Ug,Up,...,Uzn+1 @nd Uy is @& pendant vertex. Hence, u; is not a vertex in any cycle of length 4 in

GSnvz Therefore, | Cul o =1Cyl oe + number of cycles of length four, each with Uz, as a
n n
vertex in G5, 4.

Let (uzns+2 UUjui) be any cycle of length 4 in G5,,,, 2 <i,jk <2n+1 and i,j,k are all different.
Under the above conditions, the following three types of C,s arise in G5,,,. Type-1l:
Ui, Uj, Uk € {Un+1,Uns2, - . - Uzns1}, TYPE-2: Uj,UkE{Un+1,Uns2,. . .,Uzns1} @Nd Uie{U,Us,..., Uy} and Type-3:
UkE{Un+1,Uns2,. . .,Uzn+1} aNd Uj,U;e{Uz,Us,...,Ur}. Now, let us calculate number of C,s in G5, in
each type. W.l.g. assume that i <j<k.

Number of C,s of Type-1: Here, ujUjux€{Uns1,Unsz,...,Un+1} IN G5,4p. Number of ways of
selecting 3 vertices uj,u;ux out Of Uni,Unso,...,Uzns1 IS (N+1)Cs. There are 3 different C,s in
G3naWith Upns, Ui, Uj, U as vertices under type-1, namely, (Uzns2UcUjli), (Uzns2UxUil) and
(Uans2ujuil;). Hence, total number of C,s of type-1in G5,,, = 3.(n+1)C;3 = ("”)Z&

Number of C4s of Type-2: Here, ugUj€{Un+1,Uns2,...,Un+1} and uie{up,Us,...,u,}. Consider all
possible cycles, each of length 4 and with the vertices Unsz, Ui, Uj and uin G5, 4.

When i = 2, u; = U, is adjacent to Uns2 and Uansg only. And under this case, d(u;) = 2, Ux = Uz and
Uj = Uzn,Ugna,-..,Unsz. NUmber of such Css is | {Uan,Uzns,...,Unsa}l = 1.

When i = 3, u; = us is adjacent to Uansz, Uzn+1 @nd U,y only and thereby d(u;) = 3. And any C, of
type-2 is of the form (Uzn:2UsUznsilyx) OF (UznsoUs Ugzply) Where uge{Uzn,Uzn,..., Unsa} and
Uy €{Uzn+1,Uzn-1,Uzn-2,. . . ,Uns1}. Number of such C,s is 2n.

In general, when i = X and 2 < X < n, U; = Uys adjacent t0 Uzys2, Uznea,...,Uzns2-xay ONlY and thereby
d(u;) = x and number of C,s of the form (Uzn:2UiUyu,) is (x-1)n where uye{Uzns1,Uzn,. . .,Uns1} and
Uze{u2n+1,U2n, e ,Un+l}\{uy}'

(n-1)n?

Total number of Cys of type-2in G5,,,, =20 _,(x — Dn=nr=1x) = s

Number of C4s of Type-3: Here, uxe{Un+1,Uns2,..., Uz} @and Ui, Uje{u,Us,...,Un}, i#). Consider all
possible cycles, each of length 4 and with the vertices Uan:2, U, Ujand u; in G5, ... For a given i, 2
<i<n-1, j takes values i+1,i+2,...,n and possible values of k are 2n+2-1,2n+2-2,...,2n+2-(i-1).
Therefore, total number of C,s of type-3 in GS,y = 20 (n— D@ —1) =X Filn—1—1) =
(TR i) - Sy 2= 20

When u;,uj,uke{UzUs,...,Uus}, cycle C4 of the form (Uzn.oUUjli) doesn’t exist in Gz, Since
{uz,Us,...,u} is a stable set to split graph G5, 4.

Adding all C,s in the three types, we obtain, total number of C,s with u,n., as a vertex in G54, =
— — 2 — — —
(n 1)Z(n+1) + & 21)n +& 2)(6n Dn_ (n Dr;(m“), 2 < n. Therefore, for 2 <n,

— 153 2
| C4.| GSpis | C4| G5, + g(??’l -6nc — n)

= %((7713— 6n® —n)+ (7(n = 1)>-6(n — 1)* = (n = 1)) +[ Gyl 5

=% ((7Tn3- 6n2- n)+(7(n — 1)3-6(n — 1)2 — (n — 1))+...+(7. 23-6. 22-2))+| ¢,/ o

1

== (Mn3-6n?—n) +(T(n—13-6(n—1D2 —(m—1)) +..+(7.13-6.12- 1)).

_ (n=-1)n(n+1)(7n+6)
- 24

, 2 <n. Hence the result.

(n—-1)n(7n+1) (n—-1)nn+1)(7n+6)

24

Theorem 22 For 2 < n, [Cl, =1Cl, +
2n+3 2n+

(n-1)n(7n-11) _ (n-Dn(n+1)(7n-10) _ |

6 - 24 -

[Cal g5,..,2ndl Cal g5, =T Cul g, + c

Gon+2’
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Proof: Let V(G2pna3) = {Un,Us,.. ., Usns 3} = V(GS,43) Where u; is the vertex with sum labeling j in
G,n+3 and anti-sum labeling j in G5,,,5, 1 <j <2n+3 and neN. At first, let us to prove the result
for G403, NEN. {uy,U,,...,Un:2} i a clique and {Un+3,Un+s,. .., Uz 43} IS @ Stable set to G, 5. Using
Theorem 1.6, graph Gyp43\{Us, Uz, 43} IS iSOMorphicto G, .4, Without the vertex labels. Also, in
Gony+3, Uy is adjacent to Up,Us,. .., Uzp o) Usn s IS @N isolated vertex and u,, 4, iS a pendant vertex.
Therefore, | Gyl ;  =1Cul 5+ number of cycles of length four, each with u; as a vertex in

Gyn+3- Also, none of u,, ., and u,, 43 is a vertex of any cycle of length 4 in Gy, 4.

Let (u; uiujuy) be any cycle of length 4 (with u; as a vertex) in G,,43, 1 <i,j,k< 2n+2 and i,j,k are
all different. Under the above conditions, the following three types of C,s arise in G,,3. Type-1:
Ui, Uj,Uge{U2,Us,...,.Uns2}, Type-2: ujuje{UzUs,...,Un2} and uxe{Un+z,Unsa,. ..Uz} and Type-3:
uie{Uz,Us,...,Un2} and uj,Uce{Un+3,Unsa,...,Uns1}. NOW, let us calculate number of C,s in G543 in
each type.

Number of C4s of Type-1:Here , uj,u;,uce{Uz,Us,...,Un2} IN G243 Number of ways of selecting
3 vertices U;,u;Ux out of Uy,Us,...,Uns2 IS (N+1)Cs. There are 3 different C,s with uy, uj, uj, ux as
vertices under Type-1, namely, (uiuiujuy), (usuiugu;) and (usujuiug). Therefore, total number of C,s

of typ9-l in GZn+3 = 3_(n+1)c3 - W

Number of C4s of Type-2: Here, uj,uje{uz,Us,...,Uns2} and Uxe{Uns+,Unss,...,Uxn+}. Consider all
possible cycles, each of length 4 and with vertices uy, u;, ujand uin G,y 43.

When k = 2n+1, ux = Uz IS adjacent to u; and u, only. And under this case, u, = u; Or U, = U;.
W.1L.g., assume u, = u;. This implies, 2 = i< 3 <j <n+2. And any C, under this case is of the form
(UgUzn+1U2U;), Uje{U3,Us,. . .,Un2} @and number of such C,s is n.

When k = 2n, ux = U,, is adjacent to uy, U, and uz only. And any C, of type-2 is of the form
(UzUznUaUyx) OF (UUznUsUy), Ux€{Us,Us,. . .,Uns2} @and Uye{Us,Us,Us ..., Uno}. Number of such Cus is 2n.

When k = 2n-1, ux = Uz is adjacent to u; ,U, , Us and u, only and thereby d(uy) = 4. Therefore,
number of such C,s is (4-1)n = 3n.

In general, when k = 2n+3-X and 2 < X < n, Ux = Uxn+3xIiS adjacent to uy, U, . .., Uy and thereby
d(u) = d(uassx) = x and number of C,s of the form (UilzusxUil) N Gopyz S
(x-1)n where uje{u,,Us,...,u} and uje{uz,Us,...,Ur2}\{u;}. Therefore, total number of C,s of type-

. _ _ 2
21N Ganys = Ztopx — Dn= n(Ris)x) = C00

Number of C4s under Type-3: Here, uie{u,,Us,...,Ur2} and Uj,uxe{Un+3,Un+s,...,Uzn+1} and u; and
ux are adjacent to u, for every j,ke{n+3,n+4,....2n+2} in G,,,+3, jzk. W.L.g., assume, j<k. If u; and
Ux are adjacent to u;, then j+i<k+i <2n+3.

IN Gapa3, Unsasx IS adjacent to Ug,Uy, ..., Uns1x, 1 <X < nand thereby d(Un+2+x) = N+1-X. Also, U, and
Un+2 are non-adjacent to U,.3 and Uy is a pendant vertex. Hence, none of Un+g, Uns2 and Usna iS @
vertex of any C, of type-3in G,p,43.

When ux = Uz« and 2 < x < n-1, different possibilities of u; in C,s of type-3 in G5, ,3are Uy, Us, . .
. ,Ux. And corresponding to each pair of u; and uy, different possibilities of u; are Ue.i,Ux-a,. . .,Uns3 IN
Gon+3. Therefore, number of C4s of type-3 in G,,43 With Uy = Usneay IS (X-1)(k-1-(n+2)) = (x-1)(n-
X). Hence, total number of C,s of type-3in Gopyz = X0i(n—x)(x — 1) = X"22(n— 1 — x)x=
n(n-1)(n-2)

6

Cycle C, of the form (uiuiuju) with uj,Ujux€{Un+3,Unsa,...,Uxnsz} doesn’t exist in Gpp,43 SiNCe
{Un+3,Uns+s,. . .,Usn+3} IS @ Stable set to split graph G, 3.

Adding all C,s in the three types, we obtain, total number of C,s in G,, 3 with u; as a vertex =

— 200 — — —
(n”);"(n D,n (72" D, nr 12(n - 1)716(7“1), 2 <n. Therefore, for 2 <n,

- Ynden2 —
| C4'| Gan+s | C4'| Gan+1 + 6(7n bn n)
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= %((7713-6712 —m) + (=136 —1)* —(n-D) +|CJ ;.

= %((7113-6712 —m)+(7(n —1)° —6(n — 1)* — (n = ))+..+(7.2%-6.22 = 2))+[ CJ

= é((7n3-6n2 —n)+Tm—1)2%-6(n—1)2 — (n— 1))+..+(7.23-6.22 = 2))+ 0

_ (n-Dnn+1)(7n+6)
- 24 '

Now, let us prove the result on G5, . Consider graph G5,.,, neN. {uy,U,,...,un} is a stable set
and {Un+1,Unez,...,Uzne1} 1S @ clique to G5,.,. Using Theorem 1.6, graph G5,.,\{U1,Ux} iS
isomorphic to G5,,_,, without the vertex labels. In G5,,,4, Uzx+1 is adjacent to Uy, Us,...,Ux and uy is
a pendant vertex. Hence, u; is not a vertex in any cycle of length 4 in G5, .,. Therefore,
| 4l g = | ¢4l g5, number of cycles of length four, each with Uz, as a vertex in G5,

Let (Uzn+1 UkUjui) be any cycle of length 4 with uan.; as a vertex in G54, 2 <i,jk<2nandi,jk are
all different. Under the above conditions, the following three types of C,s with u,., as a vertex
arise in GS,41. Type-1: UjUUuke{Uns1,Unso,. ..U},  TYype-2:  UjUxe{Uns+1,Unsz,...,Un} and
uie{uy,Us,..., Us} and Type-3: uxe{Un+1,Un+2,...,Uzn} and uj,uje{uy,us,...,u,}. Now, let us calculate
number of C,s in G5, in each type. W.l.g., assume that i <j<k.

Number of C,s under Type-1: Here, u;,uj,ux€{Un+1,Un+2,-..,Uzn} IN G5, 1. Number of ways of
selecting 3 vertices U;,uj,Ux OUt Of Uns1,Unsz,...,Uz iS NCs. There are 3 different C,4S with Uznsq, Uj, U,
uc as vertices under type-1, namely, (Uzn+1UkUjui), (UzneaUkUity) and (uzneiUjucli). Hence, total

number of C,s of type-1 in G§,,,; = 3.nC3= W

Number of C4s under Type-2: Here, ug,Uje{Uns1,Unsz,...,Un} and uie{uy,Us,...,us}. Consider all
possible cycles (Uzs+1Uiljuy) iN G5y, q.

When i = 2, uj = u; is adjacent to U+ and uy, only. And under this case, d(u;) = 2, Uy = Uz, and u; =
Uzn-2,Uzn-2, .., Uns+2. NUmber of such Cys is | {Uzn-1,Uzn-z,...,Uns1}| = N-1.

When i = 3, u; = Uz is adjacent to Uans1, Upy and Uang Only and d(u;) = 3. And any C, of type-2 is of
the form (Uzn+1UsUanUx) OF (Uzn+1UsUznaUy), Ux€{Uzn-1,Uzn2, -..,Un+1} @Nd Uy€{Uzn,Uzn2,Uzn-3,. - ., Unsa}
Number of such C,s is 2(n-1).

In general, when i = x and 2 < X < n, U; = Uyis adjacent to Upns1, Uz,...,Uzns1-x1) ONly and thereby
d(u) = x and ui takes values Uz,Uzn.1,...,Uzn+1-x-1y @Nd Uje{Uzn,Uzn1,..., Unss}\{U}. Therefore,
number of C,s of the form (Uz..uiuy;) is (x-1)(n-1), 2 < x < n. Here, j need not be less than k.
_ 2
Total number of Cys of type-2in G541 =20 ,(x —D(n—D=(n-1Drix) = %
Number of C4s under Type-3: Here, uxe{Un+1,Un+2,...,Un} and u,uje{uz,us,...,un}, i=j. Consider
all possible cycles (Uzn+1Uiljuy) in G3,44. FoOr a given i, 2 <i<n-1, j takes values i+1,i+2,...,n and
possible values of k are 2n1,2n-1,...,2n-(i-2). Hence, total number of C,s of type-3 in G541 =
— —1)2 — — — — —
2?:_21(71 _DG-1)= 2?2_12 i(n—1—10)= (n z)én 1)? (n-2)(n 61)(2n 3)_(n 2)(6n 1)n'

Cycle C4 of the form (Uz«Uujui) with u;ujuce{usUs,...,un} doesn’t exist in G5,.; Since
{uz,Us,...,u} is a stable set to split graph G5,,4.
Adding all C,s in the three types, we obtain, total number of C,s with u,n.; as a vertex in G5, =

— — —1)2 — — — —
(n 2)(2n b, (@ 21) n, 2)(6n Dn_ (n 1)né7n 11), 2 <n. Therefore, for 2 <n,

1
| C4.| Gzcn+1= | C4| GSpos + 2(7713- 18n? + 11n)

= X(7n-18n% + 11n+(7(n — 1)%-18(n — 1% + 1100 — D)*1 €4l 5o

= %((7713-18112 +11n)+(7(n—1D3-18(n— D?*+ 11(n—D)H+ . . . +
(7.23-18. 22+11(2))+ €4l ;¢
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= <((7n3-18n? + 11n)+(7(n — 1)*-18(n — 1)? + 11(n — 1))) +...+(7.13-18. 12+11)).

= (”_1)n(”;:)(7n_10). The rest of the result follows from Theorem 2.1. 0

Lemma 2.3 Let V(G,) = {V1,V2,...,Vn} = V(Gy;) where v; is the vertex with integral sum labeling j
in G, and anti-integral sum labeling j in G;, 1 < j < n and neN. Then,
(i)GO,nEGn+2\ {vn+2}a (”) Gn+25 (Gn + {vn+1}) U{Un+2}, (”I) Grcl+2E (Gﬁu{vn+1})+ {vn+2}and
(IV) G_1 =G4\ {Vn+3, V44 }, Without the vertex labels.

Proof :(i) We have G_,,, ,= K; + ((—=G,,) + G,), m,neN,. Therefore, Gy ,,= K; + G, neN. Let
V(Gon) = {Uo,Ug,Us,...,un} and V(Gp42) = {V1,Va,...,Vns2} Where u; is the vertex with integral sum
labeling i for i = 0,1,...,n and v; is the vertex of G,, with integral sum labeling j, 1 <j < n+2.
Define f: V(G )=V (Gpi2\ {vn+2}) such that f(u;) = v, and f((u,v)) = (f(u),f(v)) for every
(u,v)eE(Go,n), 1 = 0,1,...,n. Now, (uyuy)eE(Gy,) if and only if 0 <x+y<n+1 if and only if 2 <
(x+1)+(y+1) <n+3 if and only if (VW) = (F(U).F(U))€E(Gr42) = E(Gri2\{vn+2}). This
implies, f is a bijective mapping and preserves adjacency. Hence, Gg ,=Gp+2\ {tn+2}, Without the
vertex labels.

(i) Using (i), we obtain, Gpy2= Gon'HAVn+2)= (Gn + K1) U{vni23}= (Gr + {vp H v
{vn+2}, Without the vertex labels, neN.

(iii) Using (i), we obtain, Gz m=((Gn + {vn+1}) Avn2)=(Gn + {Vn41D + {Vn42}
= (GE V1)) + {vna2}, Without the vertex labels, neN.

(iv) We have G_1 ,= K1 + ((=K{) + G,)) = K{ + Go.n=K{ + (Gr+2\ {tn+2}), without the vertex
labels, using (i), neN. Let V(G_1 ;) = {Uo,U1,Uz,...,Uns1} and V(G44) = {V1,Va,. .., Vnsa} Where u; is
the vertex with integral sum labeling i for i = 0,1,...,n and un+; is the vertex with integral sum
labeling -1 in G_4,, and v; is the vertex of G, with integral sum labeling j, 1 <j < n+4. Using
Theorem 1.6, graph G, 44\{V1,V2,Vn+3,Vn+a} 1S iISOMorphic to G, without the vertex labels. And so
((GrraMVneaVnia Vo, vi}) +K 1) +K =G4 ,without the vertex labels. Define f : V(G_1,)>V(Gp+a\
{Vn+4, Vn+3}) such that f(ug) = vy, f(Une) = Vo, T(Ui) = visp for i = 1,2,...,n and f((u,v)) = (f(u),f(v))
for every (u,v)eE(G_4 ). Now, let us consider images of edges incident at each point up and U1,
separately. In G_4 ,,, integral sum labeling of u, and u,., are 0 and -1, respectively, u, and un.; are
adjacent and each one is adjacent to u; for j = 1,2,...,n. Now, f((K1(0), ui)) = f((uo, ui)) = (f(uo),
f(u)) = (Vi,Vis)) €E(Gpia\ {Vnaz, Vnia}) for every i since 1+(i+1) < n+2, i = 1,2,...n;
f((K1(0),Un+1)) = f((Uo,Unv)) = (F(U0),F(Uns1)) = (V1,V2) €E(Grra\{Vn+3, Vn+a}) and f((Uni,ly)) =
(f(un+2),f())) = (V2,Vjs2) EE(Gr44\ {Vn+3, Vnsa}) TOr every j, j = 1,2,...,n. Therefore, f is a bijective
mapping preserving adjacency and hence, G_; ,=Gp+4 \{Vn+3, Vn+4}, Without the vertex labels.
0

Result 2.4 [Algorithm to generate G,,and G&]

Starting with eitherGyorG and using results (ii) and (iii) of Lemma 2.3 for n =24,... or n =
3,5,..., one can generate sum graphsG,and anti-sum graphsG%of any order without using
definitions of sum and anti-sum labeling.

Theorem 2.5 ForneN,| E(Gg)| =1 E(Gni2) = n+H E(G)l, | E(G_1)| = E(Gpia)l -1 = 2n+1+
[E@Gl, €3l 1€3l e, 1€3l6,= 1€l ap, €4l a,,= €46, and Cyle,,=
| C4-| Gnisa

Proof: Result follows from Lemma 2.3. O

_ (m-D)n(n+1)(7n-10)

Theorem 2.6 ForneN, | C4‘| Go,zn: | C4-| Gon+z 24 ! | C4-| Go,zn+1: | C4-| Gan+3 =
(n-1)nn+1)(7n+6) _ _ n(n+)(+2)(7n-3) _ _
24 ! | C4-| G_12n" | C4‘| Gont+a 24 and | C4-| G_12n+1" | C4-| Gont+s
n(n+1)(n+2)(7n+13)
24 ’

Proof:Result follows from Theorems 2.2 and 2.5. O
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Theorem 2.7 Number ofP;s in G,, such that each P; = uvwwithuwgE(G,,) is%,

u,v,weV(G,,) and number of P;S inG,,,,,such that each P; = uvw with uwgE(G,,) isw,

u,v,weV(G,,4+1) @and neN.

Proof: Let V(G;,) = {u1,Uz,...,Uxn} Where u; is the vertex of G,,, with sum labeling j, j =1,2,...,2n.
{u,Uy,...,u} is a clique and {Un+1,Un+2,...,Uzn} IS @ stable set to split graph G,, and vertex u, is
non-adjacent t0 Un+g,Unep,...,Usn. Each required P; in Gy, contains at least one element of
{Un+1,Un+2,...,Uan1}. In Gy, counting of Pss such that each P; = uvw and uwgE(G,,) is done as
follows, u,v,weV(G,,). W.l.g., assume that 1 < i<j< 2n-k <2n-1. For 1 <k < n-1, vertex Ug. is
adjacent to v; for i = 1,2,....,k and P3 = uguUiu; is a required path on the 3 vertices for j =
k+1,k+2,...,2n-k-1. Therefore, in G,,, humber of P;s such that each P; = uvw with uwgE(G,,)
and uvWeV(Gy) = BpTi(EE,(@n -2k —1)) = Sptik(en—1-2k) = DD
(n-1)n2n-1) _ (n-1)n(2n-1)
3 6

Similarly, let V(Gzp,4+1)= {U1,Uz,...,Uxn} Where u;j is the vertex of G,4+1 With sum labeling j, j =
1,2,...,2n+1. {uy,Uy,...,Un+1} is a clique and {Un+z,Unss, ..., U1 } iS a stable set to split graph G,p 41
and vertex Un.; iS non-adjacent t0 Uns2,Un+3,...,Ux+1. Each required P in G,,4q cONtains at least
one element of {Unsp,Unss,...,Usm}. IN Gapyq, Counting of Pss such that each P; = uvw and
uwgE(Gy,41) is done as follows, u,v,weV(Gy,41). W.1g., assume that 1 <i<j< 2n-k <2n. For 1 <
k < n-1, vertex Uz is adjacent to v; for i = 1,2,....k and P; = Upn+14Uil; is @ required path on the
3 vertices for j = k+1,k+2,...,2n+1-k-1. Therefore, in G,,,1, number of P;s such that each P; =
uvw with uwgE(Gppiq) and uV,weV(Ganeq) = SRICK ,(2n —2k)) = IP21k(2n — 2k) =
2"("2_1)" () Z(Zn_l) = ("_1)2(””). Hence the result. o

Theorem 2.8 For2<mn, (i) [ €4l .. =1Cyl o +1Cyl ¢ +mCanC, + number of €45 withk; as
avertex in G_p,, =1C4l o +1Cyl 5 +3(1C oy ¥ | Gl 6) 2| E(—=G,) |+ mlE@G)|) +
mC,.nC, + n.mC, + m.nC, + (number ofP;s in -G,,, each P; = uvwwithuwgE(-G,,)) + (number
0fP;5 inGy, eachP; = uvwwithuwgE(Gy,)) and (i) | €4l e, =1Cyl ge +1Cyl e.

Proof: We have G_,,, = K; + ((—Gp) + G,) = Ky + ((—Gp,) WG, UK, ) and GE, , = K;(0) L
((-Gf) WGr) where the vertices of K, ,are vertices of (-G, )G, m,neN,. Here, K; is the vertex
with integral sum label 0 and adjacent to all other vertices in G_,,, and an isolated vertex in
GEmn-Clearly, | Cyf ge, = 1Cyl e, + 1€yl g¢ since G<and G are disjoint subgraphs in GCp, .
Now, Css in (-G UG UKy y) = (Cas in -Gp)u (Cas in Gp) U (Cas in Kpp) andl Cyl ¢ =
number of C,s, each C, with K; as a vertex in G_,, , + number of C,s, each C, without K; aé a
Vertex in G, =1 Cql g +1Cyl ¢ +1C4 K * NUMber of Cys with K; as a vertex in G_p, , =
[C4l 6, +1C4 g, + MC2nC, + number of C4s with K; as a vertex in G_y,, since K, is a
complete bipartite graph and number of C,s in K, ,, is mC,.nCy, 2 <m,n..

Let V(G_p0n) = {UoU1,Ua,...,.Unsn} Where, in G_,,, ,= K1+ ((-Gpp)+ Gp), Uo is the vertex K; with
integral sum labeling O, u; is the vertex of -G, with integral sum labeling -i for i =1,2,...,m and
Un+j IS the vertex of G, with integral sum labeling j, j = 1,2,...,n. Let 1 <
lil < jl </ < m+n and (uouiuju) be any cycle of length 4 with u, as a vertex in G_,,,. The
following types of C,s with ug as a vertex arise. Type-1: uj,u;,uceV(-G,,); Type-2: ui,u;uceV(Gy);
Type-3: uj,u;eV(-G,,) and ueV(G,) and Type-4: uieV(-G,,) and u;uceV(G,). Let us obtain
number of C,s with K; as a vertex in G_,, ,, in each type.

Number of C4s under Type-1: Here, uj,u;uxeV(-G,,). In this case, C, is formed in G_,, ,, with
vertices Uo, U;, Uj and u, either (uiujuy) is a cycle of length 3 in -G,, or uu;uy is a path of length 2 in
G_, With uiucgE(-G,,). When (uiujuy) is a cycle of length 3 in -G,,,, possible type-1 Css in G_,, ,
with vertices Uo, Uj, Uj, Uy are (Uguiu;u), (UouiuL;) and
(Uoujuiu).Hence, number of Cys in G_,, ,, With vertices uo,u;,u;,ux when (uiu;uy) is a cycle of length
3in-G, = 3.1 ¢, Similarly, when uiujuy is a path of length 2 in -Gy, and uuE(-Gy,), then
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the only possible type-1 C, in  G_,, with vertices  upUujuc IS
(Uouiujuy). Thus, number of Cys in G_,, ,, With vertices Uo,u;,u;, Uk when ujujuy is a path of length 2 in
-G, but ujuy is not an edge of -G, = number of P;s in -G,,, each P; is not a subgraph of any C; of
-G,. Hence, number of C,s of type-1in G_,,,, = 3. | Gl et number of P;s in -G, such that each
P5 is not a subgraph of any C; of -G,,,.

Number of C4s under Type-2: Here, u;,u;,uceV(G,). Similar to type-1 and we obtain, number of
Cus Of type-2 in G_p = 3.1 G5l ; + number of Pys in G, such that each Py is not a subgraph of
any C; of G,,.

Number of C4s under Type-3: Here, u;,u;eV(-G,,) and ueV(G,). In this case, C, is formed in
G_m,n With vertices uo,u;,u;,u, such that either u; and u; are adjacent or u; and u; are non-adjacent
whereas uy takes all vertices of G,,. When u; and u; are adjacent, possible C,s of type-3 in G_, ,
with vertices Uo,u;,u;,Ux are (UoUiuju), (Uouiuku;) and (Uoujuiuy). Therefore, number of C,s of type-3
in G_,, , With vertices uo,u;,u;ux when u; and u; are adjacent = 3/ E(=G,,) | .(number of vertices of
Gn) = 3nlE(=G,) ! . Similarly, when u; and u; are non-adjacent, the only possible type-3 C, in
G_mn with vertices Uo, U;, Uj,Ux is
(Uo ujuku;).Number of non-adjacent pair of vertices in -G,, = mC, -number of adjacent pair of
vertices in -G, = mC, - | E(G_,,,)|. Hence, number of C,s of type-3 in G_,,, with vertices
Uo, Ui, Uj,ux When u; and u; are non-adjacent = n(mC, - |E(=G,,)|). Therefore, number of C,s of
type-3 in G_,, , = number of C,s of type-3 in G_,,,, with vertices uo,u;u;,ux when u; and u; are
adjacent + number of C,s of type-3 in G_,,,, with vertices up,u;,u;,ux when u; and u; are non-
adjacent = n(mC; + 2. E(=G,,) |).

Number of C4s under Type-4: Here, uie V(—G,,) and u;,uxeV(G,). Similarly, we obtain, number
of C,s of type-4 in G_,, , = M(NC, + 2. E(G,) | ). Therefore, for 2 <m,n,
Number of Css in G_p, = C |

G—m,n

= number of C, of type-l in G_,, + number of Cs of type-2 in G_,,
+ number of C,s of type-3 in G_,, ,, + number of C,s of type-4 in G_,,, ,,

=1Cy g, +1Cylq, +mCanCo+ 313l , +3lCHl

+ number of P;s in -G, such that each P; is not a subgraph of any C; of -G,,

+ number of P;s in G, such that each P; is not a subgraph of any C; of G,
+n(mC, + 2 E(G,,) | ) + m(nC, + 2| E(G,,)) | ). Hence the result. O

Corollary 2.9 For m,neN,

. _ (m-1)m(7m?+m-18) , (n—-n(7n?+n—18) .
) 1Cq 6™ = + = + mn(4mn + 6(m-+n) — 11);

— 2 — — 2 —
(”) |C4| (;_2m2n+1= (m 1)m(72r: +m—18) +(n Dn(7n*+17n-2) +

24
+ m(4m-3)(2n+1) + mn(4mn+2m+6n+1);

_ (m-1)m@m?+17m-2) |, (n-1)n(7n?+n-18)
(III) | C4-| G—(2m+1),2n_ 24 +

24
+ (2m+1)n(4n-3) + mn(4mn+6m+2n+1);

. _ (m-1)m(7m?+17m-2) |, (n-D)n(7n?+17n-2)

(IV) | C4-| G_2m+1)2n+1 24 + 24

+ (mn+m+n) (2m+1)(2n+1) + 4mn(m+n) + 2(m? + n?);

_ (m=-2)(m-1)m(Tm-1), (n-2)(n-)n(7n-1),
(V) | C4| szm,zn_ 24 I 24 ’
. _ (m=2)(m-1)m(7m-1) , (n—-Dn(n+1)(7n—-10),
(VI) | C4| szm,2n+1_ 24 I 24 !
(VII) | c | . - (m—1)m(m+1)(7m—-10) + (n—2)(n—1)n(7n—1)gnd
4 G aminan 24 24 “

International Journal of Scientific and Innovative Mathematical Research (1JSIMR) Page 375



Number of Cycles of Length Four in Sum Graphs G, and Integral Sum GraphsG,, ,,

_ (m-1)m(m+1)(7m-10) , (n—-n(n+1)(7n-10)
G£(2m+1),2n+1_ 24 I 24 '

(viii) | €4
Proof: For m,neN, using Theorems 1.5, 2.1, 2.2, 2.7, 2.8 and Corollary 1.11, we obtain, (i)
1Cl 6_ymon=1Cdl 6o *1C4l 6, + 30 Cal 5 +1Cil g )

+4(n E(G_z)l + ml E(G)l) + 2mC,.2nC;, + 2n.2mC; + 2m.2nC,

+ number of P;s in -G,,, such that each P; is not a subgraph of any C; of -G,,,

+ number of P;s in G, such that each P is not a subgraph of any C; of G,,,.

- (m-1)m(7m?-31m+34) + (n—-1)n(7n%-31n+34) + 3(
24 24

+ 4mn(n-1) + mn(2m-1)(2n-1) + 2mn(2m-1) + 2mn(2n-1) +

(m—-2)(m—-1)m + (n-2)(n-1n

) +4mn(m-1)
(m-1)m(2m-1) + (n-1)n2n-1)
6 6

_ (m—-1)m(7m?+m-18) + (n—-1)n(7n?+n-18)
- 24 24
(“) | C4-| G—zm,2n+1: | C4-| 62m+| C4-| 62n+1+3(| CSl sz+ | C3| Gzn+1) + 2((2n+1)| E(_sz)|
+2m| E(G2n41) | )+2mC,.(2n+1)C,+(2n+1).2mC,+2m.(2n+1)C,
+ number of P;s in -G,,, such that each P; is not a subgraph of any C; of -G,,,
+ number of P;s in G, 44 such that each P; is not a subgraph of any C; of Gyp,41
_ (m=-2)(m-1)m(7m-17) + (n-2)(n-1)n(7n-1)
- 24 24

+ mn(4mn + 6(m+n) — 11).

(n-1)n(2n-1)
+ (m-2)(m-1)m + —

+2(2n+1)(m-1)m + 4mn? + m(2m-1)(2n+1)n + (2n+1)m(2m-1)

+2m(2n+1)n + (m_l)";(zm—l) + (=Dn@+1)

3
_ (m-1)m(7m?+m-18) + (n—-1Dn(7n?+17n-2)
24 24

Similarly, we obtain,

+ m(4m-3)(2n+1) + mn(4mn+2m+6n+1).

_ (m-1)m(7m?+17m-2) |, (n—-1)n(7n’+n-18)
(iii) ‘ C4-‘ G_2m+1)2n 24 * 24
+ (2m+1)n(4n-3) + mn(4mn+6m+2n+1).

(iv) | C4| G—(2m+1),2n+1: ‘ C4‘ sz+1+ ‘ C4‘ GZn+1+ 3(| C3’ sz+1+ ’ 63’ GZn+1)
+2(2n + D E(=Goms)l + @m+1) | E(Gops)))
+ (2m+1)C,.(2n+1)C, + (2n+1).(2m+1)C;, + (2m+1).(2n+1)C,
+ number of P3s in -Gy, 41y Such that each P; is not a subgraph of any Cs of -G 3,41y

+ number of P;s in G,,4+4 Such that each P; is not a subgraph of any C; of G541

_ (m=-2)(m-1)m((7m-1) + (n-2)(n-1)n(7n—-1) + (m-1)m@2m-1) + (n-1)n2n—-1)
2

4 24 2
+2(2n+1)m? + 2(2m+1)n? + (2m+1)mn(2n+1)

+ (2n+1)(2m+1)m + (2m+1)(2n+1)n +

(m-1)m(m+1) + (n-1)n(n+1)
3 3

_ (m-1)m(7m?+17m-2) + (n—-D)n(7n?+17n-2)
24

24
+2(m?(2n + 1) + 2m + 1D)n?) + (mn+m+n)(2m+1)(2n+1).
Results (v) — (viii) follow from G<,, ,, = K;(0) U(—=G,) WG and using Theorem 2.2. 10

Any property of natural numbers is interesting and important. From Theorems 2.1, 2.2, 2.6 and
Corollary 2.9, we obtain the following simple properties of natural numbers.

Theorem 2.10 For 2 < n, n(n+1)(7n-4), n(n+1)(7n+8) and n(7n?+18n+5) are divisible by 6 and
n(n+1)(n+2)(7n-3), n(n+1)(n+2)(7n+1), n(n+1)(n+2)(7n+13), n(n+1)(7n?+15n-10) and
n(n+1)(7n?+31n+22) are divisible by 24, m,neN.

Proof: Result follows from Theorems 2.1,2.1,2.9, 2.1, 2.1, 2.1, 2.9 and 2.9, respectively.0
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