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Abstract: This research paper combined optimization algorithms, capacity planning, scheduling and 

discrete event simulation in the tile manufacturing plant, by determining the tooling, personnel and 

equipment resources that are required for optimal efficiency in the manufacturing process. A Dynamic 

Programming knapsack algorithm is used to optimally select jobs (in a 12-stage manufacturing process) 

such that they contribute to the production plan within a specified duration of time (28 days). This was done 
in such a way that each stage contributed to an overall optimal production plan for the tile manufacturing 

process with minimal costs. It is recommended that the designing of production processes should match 

volume-variety requirements, process design positioning and the incorporation of appropriate process 

technology. Furthermore job designs, recognising process variability, appropriately configuring process 

tasks, capacity and adopting a minimal cost task-precedence are also recommended. 
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1. INTRODUCTION 

Operations Management is an area of management concerned with overseeing, designing and 

redesigning business operations in the production of goods and/or services. It involves the 

responsibility of ensuring that business operations are effective in terms of using few resources so 
as to meet customer requirements. It is also concerned with managing the process that converts 

inputs (materials, labour and energy) into outputs (in the form of goods and/or services). An 

Algorithm is a step by step procedure which is expressed as a finite list of well-defined 
instructions. Algorithms are essential in industrial optimization and continue to be used in modern 

day industrial design. Tile industries are characterised by large scale production of a limited range 

of products. Over the last decade, consumer demand for tiles has become more sophisticated and 
the tile sector has been very competitive as a result of campaigns to ban the use of asbestos. The 

tile industry production system suffers from problems of finite products characteristics instability, 

information reliability along the supply-chain and high finite products inventory level. Sirtile 

Company is a tile manufacturing company in Zimbabwe that produces micro-concrete roofing 
tiles and less expensive, lighter, pigmented and textured roofing tiles. The company has been 

facing problems since its formation some ten years ago in its production planning, supply chain 

management and general operating. Waste due to waste of overproduction, waste of waiting, 
waste of transportation, waste of processing, waste of inventory, waste of motion, and waste of 

making defective items are common at this company. Despite the increasing demand for tiles, and 

the increasing competition as players increase in the sector, the majority of these Zimbabwean 
companies have failed to adequately fully exploit the high demand levels due to frequent 

breakdown of machinery, poor production management, and capacity planning. This paper aims 
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to optimize the tile manufacturing production process by minimizing operational costs through 
capacity planning and maximizing production output by scheduling improvements. This will be 

done through identifying bottlenecks, determining if process tasks and capacity are configured 

appropriately, scheduling of machinery and personnel and deriving a cost-reduction model that 

can be adopted by production planners in the manufacturing process. Operations management has 
yielded a lot of improvements in global leading manufacturing industries.  Improvements in lean 

production, total quality management, quality control aspects and other aspects of industrial 

optimization, have led to increased revenue in these innovative companies.  

Process design is concerned with conceiving the overall state of a process and their detailed 

workings. The first of these tasks (conceiving the overall shape or nature of the process) can be 

approached by positioning the process in terms of its volume and variety characteristics. The 

second task (conceiving the detailed workings of the process) is more concerned with the detailed 
analysis of the objectives, capacity and variability of the process. 

2. LITERATURE REVIEW 

Various techniques, algorithms and methodologies have been adopted in the manufacturing 

sector. [1] in their research, "Using Simulation to Schedule Manufacturing Resources", discussed 

a real world application of simulation to schedule operator and machine resources in a floor tile 

manufacturing plant. The paper discussed attempts at using a spreadsheet, a simulator, and finally 

Pro-model in the manufacturing scheduling process. The key aspect in this paper is the idea of 

TAKT time. [2] developed a simulation tool for tile manufacturing companies. Their paper 

showed how simulation can be useful to support management decisions related to production 

scheduling and investment planning. Their aim was to demonstrate the importance of information 

systems in tile firms. The Factory Data Model (FDM) parameter was used to describe the 

activities in ceramic tile industries operating in different European countries. A process-based 

analysis of tile manufacturers is undertaken and the individual company performance is quantified 

by Key Performance Indicators (KPI’s). The overall model composed of different processes, 

which were coded into Scilab environment and matched together to arrange a stochastic 

simulator. The simulation results were used to show how management decisions can significantly 

affect the KPI's. Queuing theory gives quantitative measures of the trade-off between cycle time 

and throughput rate of a manufacturing system [3. However, as pointed out by [4] when we 

attempt to apply queuing models to a real production system, even for a single machine, a number 

of issues are encountered. For example, real machines are subject to many kinds of interruptions, 

including breakdowns, set-ups and machine-operator interference. [5] described how to apply 

G/G/m approximations to evaluate the performance of manufacturing systems by defining service 

time (ST) using the notation of effective process time (EPT), which accounts for the theoretical  

process time, set-up, breakdown, and all other operational delays due to variability effects. 

Although these concepts are definitely useful, [6,7] pointed out that there is a systematic gap 

between effective process time and service time. In this paper we assume that queuing theory 

predicts system performance under the influence of randomness. The randomness mainly comes 

from natural variability of inter-arrival, service times and from interruptions. Interruptions can be 

either pre-emptive or non-pre-emptive, and are defined as any event which prevents machines 

from being productive. When there is no interruption and times are exponentially distributed, the 

M/M/c model suffices. If times are not exponentially distributed, the G/G/c model may be 

appropriate. Lean Production was introduced by [8]. The idea of lean thinking comprises of 

complex cocktail of ideas including continuous improvements, flattened organization structures, 

team work, elimination of waste, efficient use of resources and cooperative supply chain 

management [9]. As stated by [10] lean makes an organization more responsive to market trends, 

deliver products and services faster and produces products and services less expensively than non-

lean organizations. According to [11], a planned implementation of lean techniques can also work 

well in non-manufacturing organizations such as banks, hospitals, restaurants, etc. [12] indicated 

that the selected companies that have adopted a wide variety of lean tools and techniques gained 

many performance improvements. Findings also identified the business challenges that drive the 

companies to practice lean as well as the areas where changes have been made. [13,14,15] 

presented the application of approximate dynamic programming (ADP) algorithm to the problem 



A Dynamic Programming Operations Management Algorithim in a Tile Manufacturing 

Industry: Case Study of a Tile Company 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)              Page 391 

of job releasing and sequencing of a benchmark re-entrant manufacturing line (RML). The ADP 

approach is based on the SARSA algorithm with linear approximation structures that are turned 

through a gradient-descent approach. Results from these experiments showed a statistical match 

in performance between the optimal and the approximated policies obtained through ADP [16. 

Such results also suggest that the applicability of the ADP algorithm may be a promising 

approach for larger RML systems. In this paper, we also illustrate how a Dynamic Programming 

algorithm can be coupled with a simulation approach, and work in tandem to establish a 

functional work breakdown structure to schedule jobs in a manufacturing company. 

3. MODEL DEVELOPMENT 

3.1 Research Design 

In any manufacturing process, the system of collecting performance data is one of the important 

aspects of process analysis. In this study we have used a simplified data collection sheet that 

records process times at each stage of the manufacturing process. These include, time entity 

arrives in the system (stage), time service begins, time service ends and time entity leaves system 

stage. These times are then used to calculate cycle-times, throughput times and rates, utilization 

and other performance attributes.  

3.1.1 Little's law 

Little's law states that, under steady state conditions, the average number of items in a queuing 
system equals the average rate at which items arrive multiplied by the average time that an item 

spends in the system. Letting: 

L  = average number of items in the queuing system. 

W = average waiting time in the system for an item. 

  = average number of items arriving per unit time. 

The law is: 

WL                                             (1) 

Little's law will be used to calculate the performance attributes in each stage of the 

manufacturing process. 

3.2 Modelling Approach 

The primary advantage of Dynamic Programming is its divide-and-conquer solution strategy. 

Using Dynamic Programming, a large, complex problem can be divided into a sequence of 
smaller interrelated problems. By solving the smaller problems sequentially, the optimal solution 

to the larger problem is found. In this paper we used the knapsack approach to formulate a 

Dynamic Programming model of the tile manufacturing line, where we let:  

nd  =  number of jobs in category n selected (decision variable at stage n). 

nx  =  number of days processing time remaining at beginning of stage n (state variable for stage 

n). 

nt     = is a representation of a stage transformation function sequenced by each stage's number of  

days processing time remaining at the beginning of each stage and the number of jobs in 

category n selected. 

nr     =  is a representation of a stage transformation function, expressing the return at each stage. 

(α, β, ..., μ ) are numerical constants (integers) which assign a value rating per each stage. 

(A, B, ..., L) are the estimated completion times per job in each stage assigned by the supervisor. 
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Table 1. Stages in the production process 

CATEGORY Number of jobs to be 

processed 

Estimated completion 

time per job (in hours) 

Value rating 

Sieving a A α 

Transport raw materials to 

mixing site 

b B β 

Mixing c C γ 

Moulding machine d D δ 

De-moulding e E ε 

Transport tiles to sandblast f F λ 

Preparing mixture for sand 
blasting 

g G φ 

Sand blasting h H ϴ 

Off laying i I ϕ 

Currying j J π 

Painting k K Λ 

Despatch and stores duties l L μ 

Thus with a 1 day production period, 812 x  represents the total number of hours available for 

processing jobs. We can then define the stage transformation functions so that: 

Stage12: 121212121211 ),( Ldxdxtx    

Stage11: 111111111110 ),( Kdxdxtx   

Stage10: 10101010109 ),( Jdxdxtx   

Stage9: 999998 ),( Idxdxtx   

Stage8: 888887 ),( Hdxdxtx    

Stage7: 777776 ),( Gdxdxtx   

Stage6: 666665 ),( Fdxdxtx    

Stage5: 555554 ),( Edxdxtx    

Stage4: 444443 ),( Ddxdxtx   

Stage3: 333332 ),( Cdxdxtx   

Stage2: 222221 ),( Bdxdxtx   

Stage1: 111110 ),( Adxdxtx   

The return at each stage is based on the value rating of the associated job category and the number 

of jobs selected from that category. The return functions are as follows: 

Stage12: 12121212 ),( ddxr   

Stage11: 11111111 ),( ddxr   

Stage10: 10101010 ),( ddxr   

Stage9:  9999 ),( ddxr   

Stage8: 8888 ),( ddxr   

Stage7:  7777 ),( ddxr   



A Dynamic Programming Operations Management Algorithim in a Tile Manufacturing 

Industry: Case Study of a Tile Company 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)              Page 393 

Stage6: 6666 ),( ddxr   

Stage5:  5555 ),( ddxr   

Stage4: 4444 ),( ddxr   

Stage3: 3333 ),( ddxr   

Stage2: 2222 ),( ddxr   

Stage1: 1111 ),( ddxr   

Where (α, β,..., μ) can take any values as assigned by the production planner. 

We applied a backward solution procedure, i.e. we began by assuming that decisions have already 
been made for stages 12 - 2 and that the final decision remaining is how many jobs from category 

1 to select at stage 1. Since regardless of whatever decisions have been made at various stages, if 

the decision at stage n is to be part of an optimal overall strategy, the decision made at stage n 

must necessarily be optimal for all remaining stages. We shall extract performance attributes of 
each stage in the manufacturing process so as to extract the job data for the manufacturing 

operation.  

3.3 Modelling Assumptions 

 We shall assume that the cycle times are constant throughout the project.  

 Cycle times of various processes take constant and triangular distributions. 

 Throughput rates of all processes stages have slight deviations which are negligible. 

 The value-rating at each process stage is a variable parameter assigned by the 

production manager (for shift planning purposes) and is subject to change at various 

times of production planning.   

 A day's shift is defined as 8 hours continuous shift with no stoppage or overtime. 

4. DATA COLLECTION 

We used the primary data of averages of cycle times taken from the Manufacturing process to 

calculate the input parameters for each stage. 

4.1 Stage 1: Sieving 

To prepare a mixture (mortar) for moulding 50 tiles, requires:  

 1 bag cement, 

 57 litres (0.057 cubic metres) of sand (1 unit), 

 24 litres water. 

Therefore for 49 000 tiles for example, we require: 

 (980 by 50 kg) cement, 

 (980 by 57 litres) of sand, 

 (980 by 24 litres) of water. 

It takes an average of 10 minutes to sieve 57 litres of sand. If we define a job as sieving (48 by 57 

litres) of sand, therefore (980 by 57 litres) is equivalent to 98 jobs. Hence for an estimated 

completion time of 1 day, we have 2 jobs. 

4.2 Stage 2: Transporting Raw Materials to mixing site 

It takes 4 minutes to move 1 sand wheelbarrow (57 litres) and 2 minutes to move 1 wheelbarrow 

of cement (with 2 bags) to the mixing site. Water is available at the mixing site from a pipe. 
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Therefore if we define a job at this stage as transporting 980 wheelbarrows, we have 2 jobs, with 

an estimated completion time of 2 days per job. 

4.3 Stage 3: Mixing 

It takes 5 minutes to mix 1 wheelbarrow of mortar mixture (for moulding 50 tiles). Therefore if 

we define a job as mixing 32 wheelbarrows, we have 10 jobs to be processed and the estimated 

completion time per job is 3 days. 

4.4 Stage 4: Moulding Machines 

Each moulding machine is operated by 2 personnel. It takes 1 minute to produce 1 tile, so we need 

approximately 1 hour to produce 50 tiles. If we define a job as producing 1600 tiles it therefore 

means we have 31 jobs with an estimated completion time of 4 days per job. 

4.5 Stage 5: De-moulding 

Each person de-moulds 1 tile in 1 minute. That is approximately 400 tiles in 8 hours. If we define 

1 job as de-moulding 16333 tiles, we have 3 jobs with an estimated completion time of 5 days. 

4.6 Stage 6: Transport Tiles to Sand Blasting 

Each person can lay 1000 tiles per day. Therefore if we define a job as laying 7000 tiles, we have 

7 jobs with an estimated completion time of 7 days per job. 

4.7 Stage 7: Prepare MixturefFor Sand Blasting 

It takes 5 minutes to prepare a mixture to blast 150 tiles in a mixing machine. If we define a job as 

preparing a mixture to blast 14400 tiles, we have approximately 4 jobs with an estimated 
completion time of 1 day per job. 

4.8 Stage 8: Sand Blasting 

Each person can blast 1000 tiles per day. If we define a job as blasting 7000 tiles, we have 
approximately 7 jobs with an estimated completion time of 8 days per job. 

4.9 Stage 9: Off-laying 

Each person can off-lay 1000 tiles per day. If we define a job as off-laying 7000 tiles, then we 

have approximately 7 jobs to be processed, with an estimated completion time of 7 days. 

4.10 Stage 10: Currying 

In this stage, tiles are stacked and are sprayed with water for 3 consecutive days. On average, 1 

person can spray 49 000 tiles in 3 days. If we define a job as spraying 49 000 tiles, therefore we 

have 1 job to be processed with an estimated completion time of 3 days. 

4.11 Stage 11: Painting and Stacking 

Each person can paint 800 tiles per day. If we define a job as painting and stacking 8000 tiles, we 

therefore have approximately 6 jobs to be processed, with an estimated completion time of 10 

days. 

4.12 Stage 12: Stores and Dispatch Duties 

We shall define a job as an average of conducting stores and dispatch duties for approximately 49 

000 tiles, with an estimated completion time of 3 days. We shall assign a very high value rating 

because this stage will definitely have to be performed continuously during manufacturing.   

5.   MODEL APPLICATION 

Appendix 1 shows the Dynamic Programming formulation of the job selection problem. 

5.1 Calculating the Optimal Decisions for Each Stage 

We shall use tables to help identify the optimal decisions at each of the 12 stages of the 

manufacturing process. The job data for the manufacturing operation is shown in Table 2 below. 
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Table 2. Number of jobs and their estimated completion time 

CATEGORY Number of jobs to be 

processed 

Estimated completion 

time per job (in hours) 

Value rating 

Sieving 2 1 1 

Transporting raw materials to 

mixing site 

3 2 2 

Mixing 10 3 3 

Moulding machine 3 4 4 

De-moulding 3 5 5 

Transport tiles to sandblast 7 7 12 

Preparing mixture for sand 

blasting 

4 1 13 

Sand blasting 7 8 14 

Off laying 7 7 70 

Currying 1 3 40 

Painting 6 10 90 

Despatch and stores duties 1 3 400 

5.2 Data Analysis and Simulations 

After we have completed the dynamic programming solution of our knapsack problem, in order to 

identify the overall optimal solution, we must now trace back through the tables, beginning at 

stage 12, the last stage considered in this paper. The optimal decision at stage 12 is d12* = 1, thus 

x 11 = x 12 - 3d12* = 25, which means we enter  stage 11 with 25 days available of processing time 

to perform job tasks in the remaining stages. With x11 = 25, we see that the best decision at stage 

11 is d11* = 0 (meaning that in this particular schedule we are planning in this 28 day period, 

instantaneously on this day, we can forgo to do stage 11 jobs that are waiting and choose other 

stage jobs). Thus we enter stage 10 with x 10 = 25. The optimal decision at stage 10 with x10 = 25 

is d10* = 1, thus x 9 = x 10 - 3d 10* = 22, and we enter Stage 9 with 22 days of processing. The 

optimal decision at Stage 9 with x 9 = 22 is d 9* = 1, hence x8 = x9 - 7d9* = 15 and we enter Stage 

8 with 15 days. The optimal decision at Stage 8 with 15 days is d 8* = 1 hence x7 = x8 - 8d8*, thus 

we enter Stage 7 with 7 days of processing time. With 7 days of processing time at Stage 7, the 

optimal decision is d7* = 4 and x6 = x7 - 1d7* = 5, thus we enter stage 6 with 5 days of processing 

time. At Stage 6 the optimal decision with 5 days is d6* = 0, hence we enter Stage 5 with 5 days 

available for processing. At Stage 5, having 5 days for processing time, we have d5* = 0 or 1, 

hence we can either do one job at this stage or we do not do any job. If we choose not to do a job, 

we have x4* = x 5 - 5d5* = 0 we proceed to Stage 4 with 0 days of processing but if we choose not 

to do a job we have x4 = x5 - 5d5* = 5, we enter Stage 4 with 5 days of processing. This decision is 

subjective to the production planner, depending on the duration of time the job has been waiting 

to be processed. Suppose having chosen not to process a job at this stage, we enter Stage 4 with 5 

days and the optimal decision at Stage 4 is d4* = 1 or 0 and x3 = x4 - 4d 4* = 5 or 1. Again the 

production planner can choose whether to conduct a job or not depending on the duration of time 

the jobs have been waiting. Suppose we choose not to do a job, that is we proceed to Stage 3 with 

5 days, meaning that the optimal duration at Stage 3 is d3* = 1, hence x2 = x3 - 3d3* = 2, and we 

proceed to Stage 2 with 2 days. With 2 days of processing at Stage 2, the optimal decision is d2* = 

0 or 1, i.e. we can again choose not to do a job or do 1 job at this stage. If we do not do a job, we 

proceed to stage 1 with 2 days of processing, but if we choose 1 job we proceed with zero days of 

processing time to Stage 1, meaning that we cannot do any Stage 1 job since x1 = x2 - 2d2* = 2 or 

0. 

Suppose we do not do a job at Stage 2, we see that, at Stage 1 with 2 days, we have d1* = 2 so we 

can do two jobs. The optimal strategy for our manufacturing operation is as follows. 

From Table 3 we can conclude that we should schedule 1 job from category 12, and 1 job from 

category 10, 1 job from category 9, 1 job from category 8, 1 job from category 7, 1 job from 

category 3, and 1 job from category 1, so as to archive an optimal production capacity for the next 

28 days planning period. 
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Table 3. Optimal strategy for the tile manufacturing problem 

Decision Return 

d1
*  = 1 2 

d2
*  = 0 0 

d3
* =1 3 

d4
*  = 0 0 

d5
* = 0 0 

d6
* = 0 0 

d7
* = 4 13 

d8
*  = 1 14 

d9
* = 1 70 

d10
* = 1 40 

d11
*  = 0 0 

d12
* = 1 400 

Total Value 542 

6. SENSITIVITY ANALYSIS 

It is of particular interest to note that the optimal decision at each stage is directly proportional to 

the value rating assigned to the particular category and the respective number of processing days 

required. To realise the effect of changes in the value rating we can analyse for a change in the 

value rating of Stage 12. Suppose it was assigned at a lower value of say 300, we have one job to 

be processed and we can recalculate the table for Stage 12 to be as in Table 4: 

Table 4.  Change in the value rating 

  d12  r12 (x12, d12) + f11 (x11) d12
*  f12 (x12) X11 = x12 – 3d12 

X12 = 28  0                          1    

 344                      300 0 344 28 

The optimal decision at Stage 12 can be recalculated using this new figure to get the solution 

outlined in Table 5. 

Table 5. Optimal decision after change in the value rating 

Decision Return 

d1
*  = 0 0 

d2
*  = 0 0 

d3
* =0 0 

d4
*  = 0 0 

d5
* = (0,1) (0, 5) 

d6
* 
= 0 0 

d7
* = 4 52 

d8
*  = 1 14 

d9
* = 1 70 

d10
* = 1 40 

d11
*  = 0 0 

d12
* = 1 0 

Total Value 181 

We can also test the sensitivity of our optimal solution to a small change in the total number of 

days available for processing. Suppose we want to schedule the jobs to be processed over a 14 day 

period only. We can solve this new problem simply by making recalculations at Stage 12. The 

new Stage 12 table will appear as in Table 6. 

Table 6. Change in the number of days 

  d12  r12 (x12, d12) + f11 (x11) d12
*  f12 (x12) X11 = x12 – 3d12 

X12 = 14  0                          1    

 165                     400 1 400 11 

Tracing through all the stages, we obtain the following optimal solution shown in Table 7. 
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Table 7. Optimal decision after change in the number of days 

Decision Return 

d1
*  = 0 0 

d2
*  

= 0 0 

d3
* =0 0 

d4
*  = 0 0 

d5
* = 0 (0, 5) 

d6
* = 0 0 

d7
* = 1 13 

d8
*  = 0 0 

d9
* = 1 70 

d10
* = 1 40 

d11
*  = 0 0 

d12
* = 1 400 

Total Value 523 

7. CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusion 

From the calculations done it can be concluded that: 

 The precedence relationship of jobs per each stage is creating bottlenecks which have in 

turn reduced the output of the whole manufacturing process. 

 There is need for process balancing in stages 1 up to 6, as evidenced by successive 

queues. 

 There is underutilization of resources, i.e. moulding machine personnel, off laying 

personnel, painting personnel, de-moulding personnel, sandblasting personnel and sieving 
personnel. 

 There is significant starving of the moulding process caused by inadequate supply from 

the previous mixing process. 

 As the capacity of tiles increases, there is significant blocking in the mixing stage and de-

moulding stage. 

7.2 Recommendations 

The production planner must consider the overall shape and nature of the manufacturing process. 

The best way of doing this is by positioning it according to its volume and variety characteristics. 

The planner should also incorporate process analysis, which is a method of providing the detailed 
analysis of the process in order to refine its design. The Processes should match volume-variety 

requirements. [3] asserts that, the design of any manufacturing process should be governed by the 

volume and variety it is required to produce. This problem was also experienced in this research. 
Appropriateness of phases like process layout, process technology, job designs and process 

variability should be looked into in order to increase productivity and effectiveness of the 

production process.  
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