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Abstract:  We are concerned with the Cartesian products of two symmetric starter vectors of orthogonal 
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1. INTRODUCTION 

Let Χ and G be graphs, such that G is isomorphic to a subgraph of Χ. An ODC of Χ by G is a 

collection 𝔅 ={ f (x) : x ∈ V(x)} of subgraphs of X, all isomorphic to G, such that (i) every edge of 

X occurs in exactly two members of 𝔅 and (ii) f(x) and f(y) share an edge if and only if x and y are 

adjacent in X. The elements of 𝔅 will be called pages. This concept is a natural generalization of 

earlier definitions of an ODC for complete and complete bipartite graphs, that have been studied 

extensively (see the survey [1]). An obvious necessary condition is that X is regular. An effective 

technique to construct ODCs in the above cases was based on the idea of translating a given 

subgraph of G by a group acting on V(x). Here we deal with complete bipartite graph Kn,n with 

partition sets of size n each.   

In our paper, we use the usual notaion: Km,n for the complete bipartite graph with partition sets of 

sizes m and n, Pm+1 for the path on m+1 vertices, Cn  for the cycle on n vertices, H ∪ F for the 

disjoint union of H and F, and lG for l disjoint copies of G. In [2], the definitions not introduced 

here can be found.     

The vertices of Kn,n will be labeled by the  elements of ℤn × ℤ2. Namely, for  

(v,i) ∈ ℤn × ℤ2 we will write vi for the corresponding vertex and define {ai,bi}∈ E(Kn,n) if and only 

if i≠j for all a,b ∈ ℤn and i,j ∈ ℤ2. If there is no chance of confusion a0b1 will be written instead of 

{a0,b1} for the edge between the vertices a0,b1. 

     Let G be a spanning subgraph of Kn,n and let x ∈ ℤn. Then the graph G+x with E(G+x) = 

{(u+x,v+x) : (u,v) ∈ E(G)} is called the x-translate of G. The length of an edge e=(u,v) is defined 

by d(e) = v-u. Note that sums and differences are calculated modulo n. 

G is called a half starter with respect to ℤn if │E(G)│ = n and the lengths of all edges in G are 

mutually distinct; that is, {d(e): e ∈ E(G)} = ℤn.  The following three results were proved in [3]. 

(i) If G is a half starter, then the union of all translates of G forms an edge decomposition 

of Kn,n. 

Hereafter, a half starter will be represented by the vector v (G) = (v0,v1,…,vn-1) ∈ ℤ𝑛
𝑛

. 
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 Two half starter vectors v (G0) = (v0,v1,…,vn-1) and v (G1) = (u0,u1,…,un-1) are said to be 

orthogonal if {vi - ui : i ∈ ℤ2} = ℤn. 

(ii) If two half starters v (G0) and v (G1) are orthogonal, then  ={Gx,i : (x,i) ∈ ℤn × ℤ2} 

with Gx,i  = (Gi + x) is an ODC of Kn,n. 

The subgraph Gs of Kn,n with E(Gs) = {u0v1 : v0u1 ∈ E(G)} is called the symmetric graph of G. 

Note that if G is a half starter, then Gs is also a half starter.   
A half starter G is called a symmetric starter with respect ℤn if v (G) and v (Gs) are orthogonal. 

(iii) Let n be a positive integer and let G a half starter represented by  

v (G) = (v0,v1,…,vn-1) ∈ ℤn. Then G is symmetric starter if and only if {vi - v-i+i : i ∈ ℤn} = ℤn. 

El Shanawany et al. In [4]  got some results for ODCs by using the cartesian product of two 

symmetric starter vectors, after proving the following Theorem. 

Theorem 1 The Cartesian product of any two symmetric starter vectors is a symmetric starter 

vector  with respect to the Cartesian product of the corresponding groups. 

All our results in section 3 based on the following symmetric starter vectors of some graphs that 

can be used as ingredients for constructing an ODC of complete bipartite graphs by disjoint 

unions of graph-paths( that defined in section 2) by using the recursive constructing method called 

the cartesian product method. 

1) Pm+1 which is a symmetric starter of an ODC of Km,m whose vector is v(Pm+1)=(0,m-1,m-

2
2
,m-3

2
,…,m-3

2
,m-2

2
,m-1) ∈ ℤm, m is aprime number, see [5]. 

2) nK2,2  which is a symmetric starter of an ODC of K4n,4n whose vector is 

v(nK2,2)=(0,1,2,…,2n-1,0,1,2,…,2n-1) ∈ ℤ4n, see Lemma 2.2.13 in [3]. 

3) C4 ∪ K1,n-4 which is a symmetric starter of an ODC of Kn,n whose vector is  

                       h+2  :  i = h-1, h, or 

vi (C4 ∪ K1,n-4)  =            h      :  i = h+1, h+2, or 

 
                                     h+1   :  otherwise,

 

where n = 2h+1, and n is odd, n ≥ 5,  

                              h    : i = 1, 2h-1, or 

and vi (C4 ∪ K1,n-4) =        0    : i = h-1, h+1, or 

                                 2h-i+1     :  otherwise, 

where n = 2h, and n is even, n ≥ 6, see Lemma 4.1 in [6]. 

4) C8 ∪ K1,n-8 which is a symmetric starter of an ODC of Kn,n whose vector is   

                                     1 : i = 0, or 

                                                       2 : i = 1, 3, or 

vi (C8  ∪ K1,n-8)  =                    8  : i = n-3, n-4, or 

                                           4 : i = n-1, n-2, or 

                                           1 : otherwise, 

where n ≥ 9, see Lemma 4.2 in [6]. 

5) C6 ∪ K1,1 ∪ K1,n-7 which is a symmetric starter of an ODC of Kn,n whose vector is  
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                                       1 : i = 0, or 

                                              4 : i = 1, n-2, or 

vi (C6 ∪ K1,1 ∪ K1,n-7) =         0 : i = 2, 3, or 

                                              6 : i = n-3, n-1, or 

                                              3 : otherwise, 

 where n ≥ 7, see Proposition 4.3 in [6]. 

6) K1,2 ∪ K1,2(n-1) which is a symmetric starter of an ODC of  K2n,2n  whose vector is  

                                    (n-1) times   (n-1) times 

v (K1,2 ∪ K1,2(n-1)) = (0, n, n, …, n, 0, n, n, …, n ) ∈ ℤ2n, n ≥ 2, see [4].   

7)   
𝑛

2
 K1,2 which is a symmetric starter of an ODC of  Kn,n   whose vector is  

v ( 
𝑛

2
 K1,2) = (0,1,2,…,n-1) ∈ ℤn, where n ≡ 2,4mod6, see Lemma 2.2.11 in [3]. 

     8)   2K1,1∪ K1,n-2 which is a symmetric starter of an ODC of Kn,n whose vector is  

             v (2K1,1∪K1,n-2) = (0,0,…,0,1,n-1) ∈ ℤn, where n ≥ 5, see Lemma 2.2.17 in [3]. 

2. GRAPH-PATH DEFINITION 

Let H be a certain graph, the graph H-Path denoted by ℙm+1(H), is a path of set of vertices 𝕍={Vi  
: 0 ≤ i ≤ m} and a set of edges 𝔼 = { Ei : 0 ≤ i ≤ m} if and only if there exists the following two 

bijective mappings: 

1. ϕ : 𝔼 → ℋ defined by ϕ (Ei) = Hi, where ℋ = { H0, H1, …, Hm-1} is a collection of m 

graphs each one is isomorphic to the graph H. 

2. ψ : 𝕍 → 𝒜 defined by ψ (Vi) = Xi, where 𝒜 = { Xi : 0 ≤ i ≤ m : ∩i Xi = φ}  a class of 

disjoint sets of vertices. 

In this paper, we are concerned with an ODC of Kn,n  by ℙm+1(Kα,β ), i.e. H = Kα,β is a 

subgraph of Kn,n, and for all 0 ≤ i ≤ m, 

Xi = {Yi/2 : i ≡ 0mod2}∪{Z⌊i/2⌋ : i ≡ 1mod2}, satisfying the following conditions 

i. ∣ Yi/2 ∣=α and ∣ Z⌊i/2⌋ ∣=β ∀ 0 ≤ i ≤ m. 

ii.  Yi/2 ⊂ ℤn ×{0}, Z⌊i/2⌋ ⊂ ℤn ×{1}, and ∩i Yi/2 = ∩i Z⌊i/2⌋ = φ. 

iii. for 0 ≤ i ≤ m-1, Hi ≅ Kα,β has the following edges: 

E(Hi)={ Yi/2 Zi/2 : i ≡ 0mod2}∪{Y⌊i/2⌋ Z⌈i/2⌉} : i ≡ 1mod2}. 

For more illustration, see Fig 1. 

 

Fig 1. ℙ(K1,3), the path of 6 sets of vertices and 5 edges of K1,3. 
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3. ODCS OF KMN,MN BY DISJOINT UNIONS OF GRAPH-PATHS 

In the following, if there is no danger of ambiguity, if (i1,i2) ∈ ℤ𝑛1
× ℤ𝑛2

, we can write (i1,i2) as 

(i1i2). 

Let v(G
j 
) = (𝑣0

𝑗
, 𝑣1

𝑗
,…,𝑣𝑛𝑗 −1

𝑗
) ∈ ℤ𝑛𝑗

𝑛𝑗
 be a symmetric starter vector of an ODC of 𝐾𝑛𝑗 ,𝑛𝑗

 

by G
j
 with respect to ℤ𝑛𝑗

, where 𝑣𝑘
𝑗
, k ∈ ℤ𝑛𝑗

, 1≤  j  ≤ 2, then v(G¹) × v(G²) is a symmetric starter 

vector of an ODC of 𝐾𝑛1𝑛2 ,𝑛1𝑛2
by a new graph G with respect to ℤ𝑛1

× ℤ𝑛2
. The graph G can be 

described as follows : E(G)={(( 𝑣𝑖1

1 𝑣𝑖2

2 )₀,(( 𝑣𝑖1

1 𝑣𝑖2

2 )+(i₁i₂))₁) : (i₁i₂) ∈ ℤ𝑛1
× ℤ𝑛2

, 𝑣𝑖1

1 ∈ v (G¹), 

 𝑣𝑖2

2 ∈ v (G²)}. 

    Theorem 2 Let m be a prime number and gcd(n,3)=1, then there exists an ODC of Kmn,mn by 

nℙm+1(K2,2).                                                                                                                                

Proof.    Since v (Pm+1) and v (nK2,2) are symmetric starter vectors, then v (Pm+1) × 

v (nK2,2) is a symmetric starter vector with respect to ℤm × ℤ4n by applying Theorem 1.  The 

resulting symmetric starter graph has the following edges set:  

E(nℙm+1(K2,2))={ (( 𝑣𝑖1

1 𝑣𝑖2

2 )₀,(( 𝑣𝑖1

1 𝑣𝑖2

2 )+(i₁i₂))₁) : (i₁i₂) ∈ ℤm × ℤ4n, 𝑣𝑖1

1  ∈ v (Pm+1), 𝑣𝑖2

2  ∈ v(nK2,2)}. ■ 

For an illustration of Theorem 2, let m = 3 and n = 2, then there exists an ODC of  K24,24 by 

2ℙ4(K2,2) with respect to ℤ₃×ℤ₈, see Fig 2.  

 

Fig 2. Symmetric starter of an ODC of  K24,24 by 2ℙ4(K2,2) with respect to ℤ₃×ℤ₈. 

Theorem 3 Let m be a prime number and n > 4, then there exists an ODC of  Kmn,mn by ℙm+1(K2,2)  
 ∪ ℙm+1(K1,n-4).  

proof. Since v (Pm+1)  and v (C₄∪ K1,n-4) are symmetric starter vectors, then v(Pm+1) ×  

v (C₄∪ K1,n-4) is a symmetric starter vector with respect to ℤm × ℤn by applying Theorem 1. The 

resulting symmetric starter graph has the following edges set: E(ℙm+1(K2,2) ∪ ℙm+1(K1,n-4)) = 

{ (( 𝑣𝑖1

1 𝑣𝑖2

2 )₀,(( 𝑣𝑖1

1 𝑣𝑖2

2 )+(i₁i₂))₁) : (i₁i₂) ∈ ℤm × ℤn, 𝑣𝑖1

1  ∈ v (Pm+1), 𝑣𝑖2

2  ∈ v(C₄∪ K1,n-4)}.  

For an illustration of Theorem 3, let m = 3 and n = 7, then there exists an ODC of  K21,21 by 

ℙ4(K2,2) ∪ ℙ4(K1,3) with respect to ℤ₃ × ℤ₇, see Fig 3.  

 

Fig 3. Symmetric starter of an ODC of K21,21 by ℙ4(K2,2) ∪ ℙ4(K1,3) with respect to ℤ₃ × ℤ₇. 
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Theorem 4 Let m be a prime number and  n > 8, then there exists an ODC of  Kmn,mn by ℙm+1(C₈) 
∪ ℙm+1(K1,n-8). 

proof. Since v (Pm+1)  and v (C8 ∪ K1,n-8)  are symmetric starter vectors, then v (Pm+1) × v (C8 ∪ 

K1,n-8) is a symmetric starter vector with respect to ℤm × ℤn by applying Theorem 1. The resulting 

symmetric starter graph has the edges set:  E(ℙm+1(C₈) ∪ ℙm+1(K1,n-8)) ={(( 𝑣𝑖1

1 𝑣𝑖2

2 )₀, (( 𝑣𝑖1

1 𝑣𝑖2

2 ) + 

(i₁i₂))₁) : (i₁i₂) ∈ ℤm × ℤn, 𝑣𝑖1

1 ∈ v (Pm+1), 𝑣𝑖2

2  ∈ v (C8 ∪ K1,n-8)}. ■  

    For an illustration of Theorem 4, let m = 2 and n = 9, then there exists an ODC of K18,18 by 

ℙ3(C₈) ∪ ℙ3(K1,1) with respect to ℤ₂×ℤ₉, see Fig 4.  

  

Fig 4. Symmetric starter of an ODC of K18,18 by ℙ3(C₈) ∪ ℙ3(K1,1) with respect to ℤ₂×ℤ₉. 

Theorem 5 Let m be a prime number and  n ≥ 7, then there exists an ODC of Kmn,mn by ℙm+1(C6) ∪ 
ℙm+1(K1,1) ∪ ℙm+1(K1,n-7).  

Proof. Since v (Pm+1) and v (C₆ ∪ K1,1 ∪ K1,n-7) are symmetric starter vectors, then v (Pm+1) × 

 v (C₆ ∪ K1,1 ∪ K1,n-7) is a symmetric starter vector with respect to ℤm × ℤn by applying Theorem 1. 

The resulting symmetric starter graph has the following edges set:  

E(ℙm+1(C6) ∪ ℙm+1(K1,1) ∪ ℙm+1(K1,n-7))) ={ (( 𝑣𝑖1

1 𝑣𝑖2

2 )₀,(( 𝑣𝑖1

1 𝑣𝑖2

2 )+(i₁i₂))₁) : (i₁i₂) ∈ ℤm × ℤn,  

𝑣𝑖1

1  ∈ v (Pm+1), 𝑣𝑖2

2  ∈ v (C₆ ∪ K1,1 ∪ K1,n-7 )}.  

For an illustration of Theorem 5, let m = 2 and n = 8, then there exists an ODC of  K16,16 by 

ℙ3(C6) ∪ ℙ3(K1,1) ∪ ℙ3(K1,1) with respect to ℤ₂×ℤ₈, see Fig 5.  

 

Fig 5. Symmetric starter of an ODC of ℙ3(C6) ∪ ℙ3(K1,1) ∪ ℙ3(K1,1) with respect to ℤ₂×ℤ₈. 
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Proof. Since v (Pm+1) and v (K1,2 ∪ K1,2(n-1)) are symmetric starter vectors, then v (Pm+1) ×  

v (K1,2 ∪ K1,2(n-1)) is a symmetric starter vector with respect to ℤm × ℤ2n by applying Theorem 1. 

The resulting symmetric starter graph has the following edges set:  
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E(ℙm+1(K1,2) ∪ ℙm+1(K1,2(n-1))) ={ (( 𝑣𝑖1

1 𝑣𝑖2

2 )₀,(( 𝑣𝑖1

1 𝑣𝑖2

2 )+(i₁i₂))₁) : (i₁i₂) ∈ ℤm × ℤ2n, 𝑣𝑖1

1  ∈ v (Pm+1), 

𝑣𝑖2

2  ∈ v (K1,2 ∪ K1,2(n-1))}.  

For an illustration of Theorem 6, let m = 3 and n = 3, then there exists an ODC of K18,18 by 

ℙ4(K1,2) ∪ ℙ4(K1,4) with respect to ℤ₃×ℤ₆, see Fig 6.  

 

  

Fig 6. Symmetric starter of an ODC of K18,18 by ℙ4(K1,2) ∪ ℙ4(K1,4) with respect to ℤ₃×ℤ₆. 

Theorem 7 Let m be a prime number and n ≡ 2,4mod6, then there exists an ODC of Kmn,mn by 

( 
𝑛

2
 )ℙ4(K1,2).  

Proof. Since v (Pm+1) and v ( 
𝑛

2
 K1,2) are symmetric starter vectors, then v (Pm+1) × v ( 

𝑛

2
 K1,2) is a 

symmetric starter vector with respect to ℤm × ℤn by applying Theorem 1. The resulting symmetric 

starter graph has the following edges set:  

E(( 
𝑛

2
 )ℙ4(K1,2) )={ (( 𝑣𝑖1

1 𝑣𝑖2

2 )₀,(( 𝑣𝑖1

1 𝑣𝑖2

2 )+(i₁i₂))₁) : (i₁i₂) ∈ ℤm × ℤn, 𝑣𝑖1

1  ∈ v (Pm+1), 

 𝑣𝑖2

2  ∈ v ( 
𝑛

2
 K1,2).  

For an illustration of Theorem 7, let m = 3 and n = 8, then there exists an ODC of  K24,24 by 

4ℙ₄(K1,2) with respect to ℤ₃×ℤ₈, see Fig 7.  

 

 

                  Fig 7. Symmetric starter of an ODC of K24,24 by 4ℙ₄(K1,2) with respect to ℤ₃ × ℤ₈. 
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Theorem 8 Let m be a prime number and n  ≥ 5, then there exists an ODC of Kmn,mn by 2ℙm+1(K1,1) 
∪ ℙm+1(K1,n-2). 

Proof. Since v (Pm+1) and v (2K1,1∪K1,n-2) are symmetric starter vectors, then v (Pm+1) × v 

(2K1,1∪K1,n-2) is a symmetric starter vector with respect to ℤm × ℤn by applying Theorem 1. The 

resulting symmetric starter graph has the following edges set:  

E(2ℙm+1(K1,1) ∪ ℙm+1(K1,n-2)) = { (( 𝑣𝑖1

1 𝑣𝑖2

2 )₀,(( 𝑣𝑖1

1 𝑣𝑖2

2 )+(i₁i₂))₁) : (i₁i₂) ∈ ℤm × ℤn, 𝑣𝑖1

1  ∈ v (Pm+1), 

 𝑣𝑖2

2  ∈ v (2K1,1∪K1,n-2) }.  

For an illustration of Theorem 8, let m = 3 and n = 5, then there exists an ODC of  K15,15 by 

2ℙ₄(K1,1) ∪ ℙ₄(K1,3) with respect to ℤ₃×ℤ₅, see Fig 8. 

  

Fig 8. Symmetric starter of an ODC of K15,15 by 2ℙ₄(K1,1) ∪ ℙ₄(K1,3) with respect to ℤ₃×ℤ₅. 

4. CONCLUSION  

Using the Cartesian product of the two symmetric starter vectors, v (Pm+1) ∈ ℤm and v (G) ∈ 
ℤn , we can get v (ℙm+1(G)) which is considered a new symmetric starter vector of an ODC of 

Kmn,mn. 
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