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Abstract: Let  𝑋  be a 𝐺 −space, 𝑓:𝑋 → 𝑋  be a 𝐺 −map. In this paper, it is shown if 𝑓  is weakly 

𝐺 −mixing then 𝑓𝑛  is 𝐺 −transitive for all integers 𝑛 ≥ 1, and two sufficient and necessary conditions for 

𝑓 to be weakly 𝐺 −mixing are given. 
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1. INTRODUCTION 

Let  𝑋, 𝑑  be a metric space, 𝑓: 𝑋 → 𝑋 be a continuous map, and the iterates 𝑓𝑛  are defined 

inductively by  

𝑓1 = 𝑓, 𝑓𝑛+1 = 𝑓 𝑓𝑛      (𝑛 ≥ 1). 

We also take 𝑓0 to be the identity map, defined by 𝑓0 𝑥 = 𝑥 for each 𝑥 ∈ X. Evidently, 𝑓𝑛  is 

also a continuous map of X into itself. The map 𝑓 × ⋯× 𝑓 (with 𝑛times 𝑓 ) on the product space 

𝑋𝑛  is denoted by 𝑓𝑛 . 

By a topological transformation group we mean a triple  𝐺 , 𝑋, 𝜃 , where 𝐺 is a topological group, 

𝑋 is a Hausdorff topological space and𝜃: 𝐺 × 𝑋 → 𝑋 is a map such that: 

(i )𝜃 𝑔, 𝜃 𝑕, 𝑥  = 𝜃 𝑔𝑕, 𝑥  for all 𝑔, 𝑕 ∈ 𝐺, and 𝑥 ∈ 𝑋; 

(ii) 𝜃 𝑒, 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋, where 𝑒 is the identity of 𝐺. 

The map𝜃  is called an action of 𝐺 on 𝑋 . If𝜃  is an open map, then 𝐺  is called an open 

transformation. The space 𝑋 together with a given action𝜃 of 𝐺 is called a 𝐺 −space ([1]). A 

continuous map 𝑕: 𝑋 → 𝑋  between two 𝐺 − spaces is called a 𝐺 − map, if 𝑕(𝜃(𝑔, 𝑥)) =

 𝜃(𝑔, h(x)) for each 𝑔 ∈ 𝐺 and each 𝑥 ∈ 𝑋.  

The dynamical properties of G-maps have been studied by several authors in recent years (see 

[2-7]). In [2], Ruchi Das and Tarun Das defined the transitivity on 𝐺 −spaces and gave an example 

to show that a 𝐺 − transitive map need not to be transitive. In [3], Ruchi Das defined the 
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𝐺 −transitive subset of 𝑋 and proved that the following three statements are equivalent: (i) 𝐴 is a 

𝐺 −transitive subset of (𝑋, 𝑓), (ii) If 𝑉𝐴 is a non-empty open subset of 𝐴 and 𝑈 is a non-empty 

open subset of 𝑋  with 𝑈 ∩ 𝐴 ≠ ∅ , then there exist 𝑛 ∈ 𝑁  and 𝑔 ∈ 𝐺  such that 

𝑉𝐴 ∩ 𝜃(𝑔, 𝑓−𝑛(𝑈) ≠ ∅ , (iii) If 𝑈  is a non-empty open subset of 𝑋  with 𝑈 ∩ 𝐴 ≠ ∅  then 

  𝜃(𝑔, 𝑓−𝑛(𝑈) 𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺  is dense in 𝐴 . In [4], Ruchi Das introduced the notion of 

𝐺 −expansiveness and gave the sufficient and necessary condition for 𝑓 to be 𝐺 −expansive. In 

[5], T.Choi and J.Kim proved the decomposition theorem on 𝐺 −spaces. Let (𝑋, 𝑑), (𝑌, 𝑑 ) be 

two 𝐺 −spaces and𝐹 = {𝑓𝑘}𝑘=1
∞ , 𝐻 = {𝑕𝑘}𝑘=1

∞  be two sequences of maps on 𝑋, 𝑌 respectively. 

If there exists an equivariant uniform homeomorphism  𝑡: 𝑋 → 𝑌  such that  𝐹  and 𝐻  are 

𝑡 −conjugate, then 𝐹 is 𝐺 −chaotic implies 𝐻 is 𝐺 −chaotic ([6]). 

We say that 𝑓 is transitive if for every pair of non-empty open sets 𝑈 and 𝑉 in 𝑋, there is a 

positive integer 𝑛 such that 𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅. 𝑓is said to be weakly mixing if 𝑓2 is transitive. In [8], 

Liao Gongfu proved that the following three statements are equivalent: (i) 𝑓 is weakly mixing, (ii) 

For any non-empty open subsets 𝑈  and 𝑉  there is a𝑛 ≥ 1  such that 𝑓𝑛 𝑈 ∩ 𝑉 ≠ ∅  and 

𝑓𝑛(𝑉) ∩ 𝑉 ≠ ∅. (iii) For any non-empty open subsets𝑈, 𝑉 and 𝑊 there is a integer 𝑛 ≥ 1 such 

that 𝑓𝑛 𝑈 ∩ 𝑉 ≠ ∅and 𝑓𝑛(𝑉) ∩ 𝑊 ≠ ∅. 

In this paper, we introduce the definitions of weakly 𝐺 −mixing and 𝐺 −mixing, and provethat 𝑓 

is weakly 𝐺 −mixing if and only if for any non-empty open sets 𝑈,𝑉 and 𝑊 of 𝑋,there exist 

𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 such that 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅ and 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑊 ≠ ∅. 

It is well known that 𝑓 is topological mixing implies 𝑓 is topological weakly mixing. In this paper, 

an example is given to show that 𝑓 is 𝐺 −mixing doesn’t imply 𝑓 is weakly 𝐺 −mixing. 

2. 𝑮 −TRANSITIVITY AND 𝑮 −MIXING OF 𝑮 −MAPS 

Definition 2.1 ([2] Definition 3.1.) Let 𝑋  be a metric 𝐺 − space and 𝑓: 𝑋 → 𝑋  be a 

continuousmap. 𝑓is called 𝐺 −transitive if for every pair of non-empty open subsets 𝑈and 𝑉 of 

𝑋,there exist 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 such that 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅. 

Definition 2.2 Let 𝑋  be a 𝐺 −space and 𝑓: 𝑋 → 𝑋  be a continuous map. 𝑓 is called weakly 

𝐺 −mixing if 𝑓2 is 𝐺 −transitive. 

Definition 2.3 Let𝑋 be a 𝐺 −space and 𝑓: 𝑋 → 𝑋 be a continuous map. 𝑓is called 𝐺 −mixing if 

for every pair of non-empty open subsets𝑈 and 𝑉 of 𝑋, there exist 𝑁 ≥ 0 and 𝑔 ∈ 𝐺 such that 

𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅ for all 𝑛 ≥ 𝑁. 

Proposition 2.4 Let 𝑋 be a G-space and 𝑓: 𝑋 → 𝑋 be a G-map. The following are equivalent: 

(i) 𝑓 is 𝐺 −transitive. 

(ii) For every pair of non-empty open subsets𝑈 and 𝑉of 𝑋, there exist 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 such 

that 𝑈 ∩ 𝜃(𝑔, 𝑓−𝑛 𝑉 ) ≠ ∅. 

(iii) For any non-empty open subset 𝑈of 𝑋,   𝜃(𝑔, 𝑓−𝑛 𝑈 ): 𝑛 ∈ 𝑁, 𝑔 ∈  𝐺  is dense in𝑋. 

Proof. The proof is similar to that of the Theorem 3.4 in [3], and is omitted. ∎ 

Proposition 2.5 Let 𝑋  be a  𝐺 − space and 𝑓: X → X  be a 𝐺 −map, where 𝐺  is an open 

transformation. If 𝑓 is weakly 𝐺 −mixing, then 𝑓𝑛  is 𝐺 −transitive for all integers 𝑛 ≥ 1. 

Proof.We prove this proposition by induction on 𝑘. 

By the definition of weakly 𝐺 −mixing, 𝑓2 is 𝐺 −transitive. Thus, 𝑓1 is 𝐺 −transitive. 

Assume that for 𝑘 ≥ 2, 𝑓𝑘  is 𝐺 −transitive. Let 𝑈1 , ⋯ , 𝑈𝑘 , 𝑈𝑘+1 , 𝑉1 ,⋯ , 𝑉𝑘 , 𝑉𝑘+1 be any 2(𝑘 + 1) 
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non-empty open subsets of 𝑋. Since 𝑓2 is 𝐺 −transitive, by Proposition 2.4, there exist 𝑙 ∈ 𝑁 and 

𝑔′ ∈ 𝐺 such that 

𝑈𝑘 ∩ 𝜃(𝑔′ , 𝑓−𝑙(𝑈𝑘+1)) ≠ ∅and 𝑉𝑘 ∩ 𝜃(𝑔′ , 𝑓−𝑙(𝑉𝑘+1)) ≠ ∅. 

Let 𝑈0 = 𝑈𝑘 ∩ 𝜃(𝑔′ , 𝑓−𝑙(𝑈𝑘+1))and 𝑉0 = 𝑉𝑘 ∩ 𝜃(𝑔′ , 𝑓−𝑙(𝑉𝑘+1)). Since 𝑓 is a 𝐺 −map and 𝐺 

is an open transf- ormation, both 𝑈0 and 𝑉0 are non-empty open subsets of 𝑋. By the induction 

hypothesis, there exist 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 such that  

𝜃(𝑔, 𝑓𝑛 𝑈𝑖 )⋂𝑉𝑖 ≠ ∅, for each 𝑖 = 0,1, 2, ⋯, 𝑘 − 1. 

Noting that 

𝜃(𝑔, 𝑓𝑛 𝑈𝑘 )⋂𝑉𝑘 ⊃ 𝜃(𝑔, 𝑓𝑛 𝑈 )⋂𝑉 ≠ ∅, 

we have  

𝜃(𝑔, 𝑓𝑛 𝑈𝑘+1 )⋂𝑉𝑘+1 ⊃ 𝜃(𝑔, 𝑓𝑛(𝜃( 𝑔′ −1, 𝑓 𝑙(𝑈0))))⋂𝜃( 𝑔′ −1, 𝑓 𝑙(𝑉0)) 

⊃ 𝜃( 𝑔′ −1, 𝜃(𝑔, 𝑓𝑛+𝑙(𝑈0)) ∩ 𝑓 𝑙 𝑉0 ) 

⊃ 𝜃( 𝑔′ −1, 𝑓𝑙(𝜃(𝑔, 𝑓𝑛(𝑈0)) ∩ 𝑉0)) 

≠ ∅. 

It follows that 𝑓𝑘+1 is 𝐺 −transitive. Thus, 𝑓𝑛  is 𝐺 −transitive for all integers 𝑛 ≥ 1.∎ 

Proposition 2.6 Let 𝑋  be a 𝐺 − space and 𝑓: 𝑋 → 𝑋  be a 𝐺 −map, where 𝐺  is an open 

transformation. If 𝑓 is weakly 𝐺 −mixing, then𝑓𝑛  is weakly 𝐺 −mixing for all integers 𝑛 ≥ 1. 

Proof. Put 𝑛 ≥ 1  and let 𝑈, 𝑉, 𝑈′ , 𝑉 ′  be non-empty open subsets of 𝑋 . Since  𝑓 is 

continuous,𝑈,𝑓−1 𝑈 ,⋯ , 𝑓− 𝑛−1  𝑈 , 𝑉, 𝑓−1 𝑉 ,⋯ , 𝑓− 𝑛−1  𝑉 are non-empty open subsets of𝑋. 

It follows from Proposition 2.5 that 𝑓𝑛  is 𝐺 −transitive. Therefore, there exist 𝑘 ∈ 𝑁 and 𝑔 ∈ 𝐺 

such that 

𝑈′ ∩ 𝜃(𝑔, 𝑓− 𝑘+𝑖 (𝑈)) ≠ ∅and𝑉 ′ ∩ 𝜃(𝑔, 𝑓− 𝑘+𝑖 (𝑉)) ≠ ∅ for all 0 ≤ 𝑖 ≤ 𝑛 − 1. 

This means that there is 𝑖0, 1 ≤ 𝑖0 ≤ 𝑛 − 1, such that 𝑘 + 𝑖0 is multiple of 𝑛. Assume 𝑘 + 𝑖0 =

𝑛𝑝, we have  

𝑈′ ∩ 𝜃(𝑔, 𝑓−𝑛𝑝 (𝑈)) ≠ ∅and 𝑉 ′ ∩ 𝜃(𝑔, 𝑓−𝑛𝑝 (𝑉)) ≠ ∅. 

Hence,𝑓𝑛  is weakly 𝐺 −mixing. ∎ 

Theorem 2.7 Let 𝑋  be a 𝐺 − space and 𝑓: 𝑋 → 𝑋  be a 𝐺 − map, where  𝐺  is an open 

transformation. Then 𝑓 is weakly  𝐺 −mixing if and only if for any non-empty open subsets U 

and 𝑉of 𝑋, there exist 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 such that 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅ and 𝜃(𝑔, 𝑓𝑛(𝑉))⋂𝑉 ≠

∅. 

Proof. The necessity is obvious, so it is enough to prove the sufficiency. 

Let 𝑈1 ,  𝑉1, 𝑈2 ,  𝑉2be any non-empty open subsets of 𝑋. Since 𝑓  is 𝐺 −transitive, there exist 

𝑛1 ∈ 𝑁 and 𝑔1 ∈ 𝐺 such that 

𝐴 =  𝑉1 ∩ 𝜃 𝑔1 , 𝑓−𝑛1 𝑉2  ≠ ∅, 

and there exist 𝑛2 ∈ 𝑁 and 𝑔2 ∈ 𝐺 such that 

𝐵 = 𝜃(𝑔1 , 𝑓−𝑛1 (𝑈2)) ∩ 𝜃(𝑔2 , 𝑓−𝑛2 (𝐴)) ≠ ∅. 

Hence, there exist 𝑛3 ∈ 𝑁 and 𝑔3 ∈ 𝐺 such that 
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𝜃(𝑔3 , 𝑓𝑛3 (𝐵)) ∩ 𝐵 ≠ ∅and 𝜃(𝑔3 , 𝑓𝑛3 (𝑈1)) ∩ 𝐵 ≠ ∅. 

Putting 𝑛 = 𝑛2 + 𝑛3and 𝑔 = 𝑔2
−1𝑔3, we have  

𝜃(𝑔, 𝑓𝑛(𝑈1))⋂𝑉1 = 𝜃(𝑔2
−1𝑔3 , 𝑓𝑛2+ 𝑛3 (𝑈1)) ∩ 𝑉1 

⊃ 𝜃(𝑔2
−1𝑔3 , 𝑓𝑛2+ 𝑛3 (𝑈1)) ∩ 𝐴 

= 𝜃(𝑔2
−1𝑔3 , 𝑓𝑛2+ 𝑛3 (𝑈1)) ∩ 𝜃(𝑔2

−1𝑔2, 𝑓𝑛2 (𝑓−𝑛2 (𝐴))) 

⊃ 𝜃(𝑔2
−1𝑔3, 𝑓𝑛2+ 𝑛3 (𝑈1)) ∩ 𝜃(𝑔2

−1, 𝑓𝑛2 (𝜃(𝑔2 , 𝑓−𝑛2 (𝐴))))                                      

⊃ 𝜃(𝑔2
−1, 𝑓𝑛2 (𝜃(𝑔3 , 𝑓𝑛3 (𝑈1)) ∩ 𝜃(𝑔2 , 𝑓−𝑛2 (𝐴))))     

 ⊃ 𝜃(𝑔2
−1 , 𝑓𝑛2 (𝜃(𝑔3 , 𝑓𝑛3 (𝑈1)) ∩ 𝐵))              

≠ ∅.                                                                         

Noting that𝜃(𝑔3 , 𝑓𝑛3 (𝐵)) ∩ 𝐵 ≠ ∅, we have 

∅ ≠ 𝜃(𝑔2
−1𝑔1

−1 , 𝑓𝑛2+ 𝑛1 (𝜃(𝑔3 , 𝑓𝑛3 (𝐵)) ∩ 𝐵)) 

                                ⊂ 𝜃(𝑔2
−1𝑔1

−1 , 𝑓𝑛2+ 𝑛1 (𝜃(𝑔3 , 𝑓𝑛3 (𝐵)))) ∩  𝜃(𝑔2
−1𝑔1

−1 , 𝑓𝑛2+ 𝑛1 (𝐵)) 

                                

⊂ 𝜃(𝑔2
−1𝑔1

−1 , 𝑓𝑛2+ 𝑛1 (𝜃(𝑔3 , 𝑓𝑛3 (𝜃(𝑔1 , 𝑓−𝑛1 (𝑈2))))))  

∩  𝜃(𝑔2
−1𝑔1

−1 , 𝑓𝑛2+ 𝑛1 (𝜃(𝑔2 , 𝑓−𝑛2 (𝐴)))) 

              = 𝜃(𝑔, 𝑓𝑛(𝑈2))⋂ 𝜃(𝑔1
−1, 𝑓−𝑛1 (𝐴)) 

⊂  𝜃(𝑔, 𝑓𝑛(𝑈2))⋂𝑉2. 

Hence, 𝑓 is weakly 𝐺 −mixing. ∎ 

Theorem 2.8 Let 𝑋 be a𝐺 −space and 𝑓: 𝑋 → 𝑋 be a 𝐺 −map, where 𝐺is open transformation. 

Then 𝑓 is weakly 𝐺 −mixing if and only if for any non-empty open subsets 𝑈, 𝑉 and 𝑊 of 𝑋, 

there exist 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 such that 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅ and 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑊 ≠ ∅. 

Proof. The necessity is obvious, so it is enough to prove the sufficiency.  

Let 𝑈1 ,  𝑉1, 𝑈2 ,  𝑉2be any non-empty open subsets of 𝑋. By the hypothesis, there exist 𝑘 ∈ 𝑁 and 

𝑔1 ∈ 𝐺 such that 

𝑈′ = 𝜃(𝑔1 , 𝑓𝑘(𝑈1)) ∩ 𝑈2 ≠ ∅and 𝑉 ′ = 𝜃(𝑔1 , 𝑓𝑘(𝑈1)) ∩ 𝑉2 ≠ ∅, 

so 

𝑈 = 𝑈1 ∩ 𝜃(𝑔1
−1 , 𝑓−𝑘(𝑈2)) ≠ ∅and 𝑉 = 𝑈1 ∩ 𝜃(𝑔1

−1 , 𝑓−𝑘(𝑉2)) ≠ ∅. 

Hence, there exist 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝐺 such that 

𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅and𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉1 ≠ ∅. 

It follows that 

𝜃(𝑔, 𝑓𝑛(𝑈1))⋂𝑉1 ⊃ 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉1 ≠ ∅. 

Noting that 𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅, we have  

∅ ≠ 𝜃(𝑔1 , 𝑓𝑘(θ(𝑔, 𝑓𝑛(𝑈))⋂𝑉)) 

                            ⊂  𝜃(𝑔1 , 𝑓𝑘(θ(𝑔, 𝑓𝑛(𝑈)))) ∩ 𝜃(𝑔1 , 𝑓𝑘(𝑉)) 

                                ⊂  𝜃(𝑔, 𝑓𝑛(θ(𝑔1, 𝑓𝑘(𝑈)))) ∩ 𝑉2 
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                                ⊂ 𝜃(𝑔, 𝑓𝑛(𝑈2))⋂𝑉2. 

Hence, 𝑓 is weakly 𝐺 −mixing. ∎ 

3. EXAMPLES 

It is obvious that 𝑓 is transitive implies 𝑓 is 𝐺 −transitive. 

Under trivial action of 𝐺  on𝑋 , 𝐺 − transitivity coincides with transitivity. However, under 

non-trivial action of 𝐺 on 𝑋 , the 𝐺 − transitivity does not imply the transitivity. In [2], the 

following example was given to show that the 𝐺 −transitivity does not imply the transitivity.  

Example 3.1 ([2] Example 3.3) Let 𝑋 =  ±
1

𝑛
, ±  1 −

1

𝑛
 |𝑛 ∈ 𝑁  under usual metric. Consider 

action of 𝑍2, additive group of integers mod 2, on 𝑋 given by 𝜃(0, 𝑡) = 𝑡 and𝜃 1, 𝑡 = −𝑡, 𝑡 ∈

𝑋. Map 𝑓: 𝑋 → 𝑋 defined by 

𝑓(𝑥) =

 
 
 

 
 𝑥+ if  𝑥 ∈  

1

𝑛
, 1 −

1

𝑛
 𝑛 ≠ 1, 𝑛 ∈ 𝑁 ,             

𝑥− if  𝑥 ∈  −
1

𝑛
, −  1 −

1

𝑛
  𝑛 ≠ 1, 𝑛 ∈ 𝑁 ,

𝑥 if 𝑥 ∈  −1,0,1 .                                             

  

Where 𝑥+ denotes element of 𝑋 immediate to right of 𝑥, 𝑥− denotes element of 𝑋 immediate to 

left of 𝑥.  

Remark. Example 3.1 can’t be used to show that the 𝐺 −transitivity does not imply the 

transitivity. In fact, let 𝑈 = (
1

4
,

1

2
) ∩ 𝑋and 𝑉 = (

1

9
,

1

7
) ∩ 𝑋 . For every 𝑛 ≥ 1, 𝜃(1, 𝑓𝑛(𝑈))⋂𝑉 =

∅and 𝜃(0, 𝑓𝑛(𝑈))⋂𝑉 = 𝑓𝑛(𝑈) ∩ 𝑉 = ∅. Hence, 𝑓 is neither 𝑍2-transitive nor transitive. 

Inspired by the Example 3.1, we give the following example to show that the 𝐺 −transitivity does 

not imply the transitivity. 

Example 3.2 Let 𝑓:  −1,1 → [−1,1] be defined by 

𝑓(𝑥) =

 
 
 

 
 −2𝑥 − 2 if − 1 ≤  𝑥 ≤ −

1

2
,

2𝑥          if −
1

2
< 𝑥 <

1

2
,      

−2𝑥 + 2 if  
1

2
≤  𝑥 ≤ 1.          

  

Consider action of 𝑍2, additive group of integers mod 2, on  −1,1  given by 𝜃(0, 𝑡) = 𝑡 and 

𝜃 1, 𝑡 = −𝑡, 𝑡 ∈  −1,1 . Then 𝑓 is 𝑍2-transitive, but 𝑓 is not transitive. 

Proof.It follows by 𝑓  0,1  = [0,1] that 𝑓 is not transitive. It is easy to see that 𝑕1 = 𝑓|[0,1] and 

𝑕2 = 𝑓|[−1,0]are transitive. 

Let 𝑈, 𝑉 be any non-empty open subsets of [-1,1] and let 𝑈1 = 𝑈 ∩ (0,1) , 𝑉1 = 𝑉 ∩ (0,1) , 

𝑈2 = 𝑈 ∩ (−1,0), 𝑉2 = 𝑉 ∩ (−1,0). 

Case 1.𝑈1 ≠ ∅and 𝑉1 ≠ ∅. Since 𝑕1 is transitive, there exists 𝑛 ∈ 𝑁 such that 𝑕1
𝑛(𝑈1) ∩ 𝑉1 ≠ ∅. 

Thus 𝜃(0, 𝑓𝑛(𝑈)) ∩ 𝑉 ⊃ 𝜃(0, 𝑕1
𝑛(𝑈1) ∩ 𝑉1) ≠ ∅. 

Case 2.𝑈2 ≠ ∅and 𝑉2 ≠ ∅. Since 𝑕2 is transitive, there exists 𝑛 ∈ 𝑁such that 𝑕2
𝑛(𝑈2) ∩ 𝑉2 ≠ ∅. 

Thus 𝜃(0, 𝑓𝑛(𝑈)) ∩ 𝑉 ⊃ 𝜃(0, 𝑕2
𝑛(𝑈2) ∩ 𝑉2) ≠ ∅. 



He Dongchao 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)      Page | 267 

Case 3.𝑈1 ≠ ∅and 𝑉2 ≠ ∅ . Since 𝑕1  is transitive, there exists 𝑛 ∈ 𝑁  such that 𝑕1
𝑛(𝑈1) ∩

𝜃(1, 𝑉2) ≠ ∅. Thus 𝜃(1, 𝑓𝑛(𝑈)) ∩ 𝑉 ⊃ 𝜃(1, 𝑓𝑛(𝑈) ∩ 𝜃(1, 𝑉)) ⊃ 𝜃(1, 𝑕1
𝑛(𝑈1) ∩ 𝜃(1, 𝑉2)) ≠ ∅. 

Case 4.𝑈2 ≠ ∅and 𝑉1 ≠ ∅ . Since 𝑕2  is transitive, there exists 𝑛 ∈ 𝑁  such that 𝑕2
𝑛(𝑈2) ∩

𝜃(1, 𝑉1) ≠ ∅. Thus 𝜃(1, 𝑓𝑛(𝑈)) ∩ 𝑉 ⊃ 𝜃(1, 𝑓𝑛(𝑈) ∩ 𝜃(1, 𝑉)) ⊃ 𝜃(1, 𝑕2
𝑛(𝑈2) ∩ 𝜃(1, 𝑉1)) ≠ ∅. 

It follows by Case 1-4 that there exist 𝑛 ∈ 𝑁 and 𝑔 ∈ 𝑍2 such that𝜃(𝑔, 𝑓𝑛(𝑈))⋂𝑉 ≠ ∅. Thus 𝑓 

is 𝑍2-transitive, but 𝑓 is not transitive. ∎ 

Remark.Under trivial action of 𝐺on 𝑋, if 𝑓 is 𝐺 −mixing then 𝑓 is weakly 𝐺 −mixing. But the 

following example shows that the 𝐺 −mixing doesn’t imply the weakly 𝐺 −mixing. 

Example 3.3 Let 𝑓 and 𝑍2 be defined as Example 3.2. Then 𝑓 is 𝑍2 −mixing but not weakly 

𝑍2 −mixing. 

Proof.The proof of 𝑍2 −mixing is similar to that of 𝑍2 −transitivity, and is omitted. The following 

we will show that 𝑓 is not weakly 𝑍2 −mixing. 

Let 𝑈1 = (−1,1), 𝑉1 = (0,
1

3
), 𝑈2 = (

1

3
,

2

3
), 𝑉2 = (

2

3
, 1). Since 𝜃 0, 𝑓𝑛(𝑈1 ) ⊂ [−1,0] and   

𝜃 1, 𝑓𝑛(𝑈2 ) ⊂ [−1,0]for all integers 𝑛 ≥ 0, then 

𝜃 0, 𝑓𝑛(𝑈1 ) ∩ 𝑉1 = ∅and𝜃 1, 𝑓𝑛(𝑈2 ) ∩ 𝑉2 = ∅ 

for all integers 𝑛 ≥ 0. Hence 𝑓 is not weakly 𝑍2-mixing. ∎ 

4. CONCLUSION 

In this paper we study some properties and two equivalent conditions of 𝐺 −weakly mixing. 
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