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1. INTRODUCTION 

The concept of an Almost Distributive Lattice (ADL) was introduced by U.M. Swamy and G.C. 

Rao[8] as a common abstraction of most of the existing ring theoretic and lattice theoretic 

generalizations of a Boolean algebra. The concept of Birkhoff center B of an ADL A was 

introduced in [9] and it was observed that B is a relatively complemented ADL. 

G. Epstein and A. Horn  introduced the concept of a 
0

P  lattice in [5]. Later, T. Traczyk, Ph. 

Dwinger are studied and explored its properties. 
0

P  lattice has good applications in computers 

and logic on the lines of G. Epstein and A. Horn [3,4]. For this reason, G.C. Rao extended this 

concept in to the class of ADLs as 
0

P  Almost Distributive Lattices as a generalization of 

0
P  lattice. In this paper, we derive some important properties of 

0
P  Almost Distributive 

Lattice. These properties will help the further investigations of possible applications of 

1
P  Almost Distributive Lattices, 

2
P  Almost Distributive Lattices and Post Almost Distributive 

Lattice in logic and computer science on the lines of G. Epstein and A. Horn [3,4]. 

2. PRELIMINARIES  

In this section, we give the necessary definitions and important properties of an ADL taken from 

[8] for ready reference. 

Definition 1.1 [8] An algebra ( , , , 0 )A    of type ( 2 , 2 , 0 )  is called an Almost Distributive 

Lattice (ADL) if it satisfies the following axioms: 

i. 0x x   

ii. 0 0x   

iii. ( ) ( ) ( )x y z x z y z        

iv. ( ) ( ) ( )x y z x y x z        

v. ( ) ( ) ( )x y z x y x z       

vi. ( ) ,x y y y    for all , , .x y z A  
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Theorem 1.2. [8] Let m  be a maximal element in an ADL A  and .x A  Then the following are 

equivalent: 

i. x is a maximal element of ( , ) .A   

ii. .x m m   

iii. x a a  ,  for all .a A  

iv. x a x  ,  for all .a A  

v. a x  is maximal, for all .a A  

Definition 1.3. [9]  Let A  be an ADL with a maximal element m  and  

( ) {   |  0B A x A x y    and x y  is maximal for some } .y A  Then ( ( ) , , )B A   is a 

relatively complemented ADL and it is called the Birkhoff center of .A  We use the symbol 

B instead of ( )B A  when there is no ambiguity. 

For other properties of Birkhoff center of an ADL, we refer [9]. 

In our paper [7], we introduced the concept of Pseudo-supplemented Almost Distributive Lattices 

and derive its properties. The following definition was taken from [7]. 

Definition 1.4. [7] Let A  be an ADL with a maximal element m  and Birkhoff center .B  A  is 

called a Pseudo-supplemented Almost Distributive Lattice (or, simply a PSADL) if, for each 

,x A  there exists b B  such that  

 P1: x b b   

 P2: if c B  and ,x c c   then .b c c   

Here b m  is uniquely determined by x  and it is denoted by !x , the pseudo-supplement of x . 

Also, we observe that ! B ( [0 , m ])x  . For other properties of PSADL, we refer [7]. 

3. PROPERTIES OF 
0

P  ADLS 

The concept of 
0

P  lattice was introduced by G. Epstein and A. Horn in [5]. The following 

definition is taken from [5]. 

Definition 2.1. [5] Let A be a bounded distributive lattice and let B  be a Boolean subalgebra of 

the center of .A  A chain base of A  is a finite sequence 
0 1 2 1

0 ...... 1
n

e e e e


       such 

that A  is generated B  
1 2 1

{ , , , ......, } .
o n

e e e e


  If A  has a chain base, then A  is called a 

0
P  lattice. 

The concept of 
0

P  Almost Distributive Lattice (
0

P  ADL) was introduced by G.C. Rao and A. 

Meherat in [6] as follows. 

Definition 2.2. [6] Let A  be an ADL with a maximal element m   and Birkhoff center .B  Then 

A  is a 
0

P  Almost Distributive Lattice(or, simply a 
0

P  ADL) if and only if there exist 

elements 
0 1 2 1

0 , , , ....,
n

e e e e


  in A  such that: 

i. 
1n

e m m

   

ii. 
1 1

,
i i i

e e e
 

  for 1 1i n      

iii. for any ,x A  there exist 
i

b B  such that 
1

1
( ) .

n

i i i
x m b e m




   ê  
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A set 
0 1 2 1

{0 , , , ......., }
n

e e e e


  of elements in a 
0

P  ADL A  satisfying conditions ( ) , ( )i i i  and 

( )i i i  is called a chain base of .A  

Definition 2.3 [6] Let 
0 1 2 1

( ; , , , ....., )
n

A e e e e


 is a 
0

P  ADL and x A  such that 

1

1
( ) .

n

i i i
x m b e m




   ê .............(♦) where .

i
b B   

i. If 
1 1i i i

b b b
 

   for 1 2 ,i n    then (♦) is called a monotone representation of ,x  or 

simply as mono. rep. 

ii. If 0
i j

b b   for ,i j  then (♦) is called a disjoint representation of ,x  or simply as dis. 

rep. 

We observed that every element in A  has both a mono. and dis. representation. The following 

theorem is easily proved by induction. 

Theorem 2.4.  Let ( , , , 0 , )A m   be and ADL with a maximal element m  and Birkhoff center  

Let ,
i i

b e A for 0 1i n    such that 
1i i i

b b b


  and 
1 1

.
i i i

e e e
 
   Then,  

1 1

0 0 1 1 1
( ) ( ) .

n n

i i i n i i i
b e m b e b e m

 

   
      ê ì  

Here afterwards, 
0 1 2 1

( ; , , , ....., )
n

A e e e e


stands for a 
0

P  ADL ( , , , 0 , )A m   with a chain base 

0 1 2 1
{0 , , , ....., }

n
e e e e


  and Birkhoff center .B  

Now we prove the following. 

Theorem 2.5.  Let 
0 1 2 1

( ; , , , ....., )
n

A e e e e


 be a 
0

P  ADL. Then A  has a maximal n  term chain 

base 
0 1 2 1

{0 ..... }
n

e e e e


      if and only if 
1i i

b e m e m


     implies 

b m 
1i

e m

  for b B and 1 1 .i n    

Proof:  Let e  be the maximal chain base in 
0

P  ADL .A  Suppose 
1i i

b e m e m


     for 

b B and 1 1 .i n     

Let   
1

( ( )) . 
i i i

f m e b e m


      Then 

1
 ( ( ) )

m m

i i i
b f m b e b e m


       where 

m
b  is the complement of b m  in [0,m] 

                      
1

( ) ( )
m m

i i
b e m b e m


       

                      .
m

i
b e m    

Since ,b B  we have ( )
m

i i
e m b b e m      

                                                  ( ) ( )
m

i i
b e m b e m       

                                                  
1

( ) ( )
m

i i
e m b f m


       

                                                  ( )
i i

e f m    

                                                  .
i

f m   

Since
1

,
i i i

e m f m e m


     weget 

0 1 2 1 1 2 1
0 , , , ...., , , .......,

i i i i n
e e m e m e m f m e m e m e m

   
           is a chain base of 

.A  Since 
i i

f m e m    and e  is the maximal chain base of ,A  we conclude that 
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.
i i

f m e m    Then 
i i

b e m e m     and hence 
1 1

.
i i i

b e m b e m e m
 

        

Repeating the above argumentation a finite number of times, we get 
1 1n i

b e m e m
 

     and 

hence 
1

.
i

b m e m


    Conversely, suppose that 
1i i

b e m e m


     implies 

1i
b m e m


    for b B  and 1 1 .i n    Suppose e  and f  are two n  term chain bases of 

A  and 
1i i

b e m e m


     implies 
1i

b m e m


    for b B  and 1 1 .i n    By our 

assumption and Theorem 3.18[6], we get that A  is a pseudo-complemented ADL and again, by 

Theorem 3.21[6], we get A  has a chain base 
0 1 2 1

{ , , , ......, }
n

g g g g


 such that 
1

g  is the smallest 

dense element of .A  It is enough to show that f e  in the case 
1

f  is the smallest dense element 

of .A  Consider  

1 1 1 2 2 3 3 , 1 1
( .... . . . )

i i i i n n
e a f a f a f a f m

 
       

1 1 1 2 2 3 3 , 1 1
( .... . . . )

i i i i n n
f b f b f b f b f m

 
       for  1, 2 , ....., 1 .i n   

Then 
1 1 1

0
m

a e   where 
1 1

m
a  is the complement of 

1 1
a m  in [0 , ]m  and hence 

1 1
.a m m   

Similarly, we get 
1 1

,b m m   being 
1

f  is the smallest dense element of .A  Thus 
1 1

.e f  

Similarly, we get 
1 1

f e  and hence 
1 1

.e f  Clearly 
0 1 1

{ , , ....., }
n

e e e


 and 
0 1 1

{ , , ....., }
n

f f f


 are 

chain bases in 
1 1

[ , ]
n

e e


  and members of the center of this interval are of the form 

1 1
( ( )) .

n
e b e m


    Then, by the hypothesis, we get 

1 1
( )

i
b e m e m


    for 2 .i   By 

applying the above argumentation may be applied to this case as well finite number of steps, we 

get that A  has a maximal n  term chain base.                   ● 

Theorem 2.6. Let 
0 1 2 1

( ; , , , ....., )
n

A e e e e


 be a 
0

P  ADL. Then the following are equivalent: 

i.    
1i i

b e m e m


     implies 0
i

b e   for every b B  and 1 1 .i n    

ii. 
1

( )
i i

b e m e m


    implies 
i

b m e m    for every b B  and 1 1 .i n    

Proof. Let 
1i i

b e m e m


     implies 0
i

b e   for every b B  and 1 1 .i n      

Suppose 
1

( ) .
i i

b e m e m


      

Then 
1

( )
m m

i i
b b e m b e m


      where 

m
b is complement of b m  in [0 , ]m  

1

m m

i i
b e m b e m


       

1

m

i i i
b e m e m e m


        

( ( ) )
m

i i
b b e m b e m        

( )
i

b e m b m      

.
i

e m b m      

Thus we get (i)  (ii). Similarly, we get (ii) (i).      

In the following theorem, we derive some important properties of a 
0

P  ADL and using this 

theorem, we can replace x B  in the hypothesis of Theorem 3.5 by .x A  

Theorem 2.7. Let 
0 1 1

( ; , , ...., )
n

A e e e


 be a 
0

P  ADL with a maximal element m  and Birkhoff 

center .B  Then the following are equivalent: 

i.  
1i i

b e m e m


    implies 
1i

b m e m


    for every ,1 1 .b B i n     
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ii. 
1i i

x e m e m


    implies 
1i

x m e m


    for every ,1 1 .x A i n     

Proof. Clearly (i) follows (ii). Now assume 
1i i

x e m e m


     implies 
1i

x m e m


    for 

every ,1 1 .x A i n     Suppose x A  and 
1

.
i i

x e m e m


     Since ,x A x  has a 

mono. representation. Let 
1

1
( ) .

n

i i i
x m x e m




   ê  Then 

1i i i
x e m e m


     and hence 

1i i
x e m e m


     and hence 

1
.

i i
x m e m


    By monotonicity gives 

1j i
x m e m


   for 

.j i  Therefore 
1j j i

x e m e m


     for .j i  Similarly, we get 
1j j i

x e m e m


     for 

.j i  Hence 
1

.
i

x m e m


                      

Unlike in lattices, the dual of an ADL in not an ADL, in general. For this reason, we introduce the 

concept of a dual 
0

P  Almost Distributive Lattice as a generalization of a dual 
0

P  lattice. 

Definition. 2.8.  Let A  be an ADL with a maximal element m  and Birkhoff center .B  Then 

A  is said to be a dual 
0

P  Almost Distributive Lattice (or, simply a dual
0

P  ADL) if and only if 

there exist elements 
0 1 2 1

0 , , , ....,
n

e e e e A


   such that: 

i. 
1

,
i i i

e e e

   for 1 1i n    

ii. for any ,x A  there exist 
i

b B  such that 
1

1
( ) .

n

i i i
x m b e m




   ì  

We observed that if 
0 1 1

( ; , , ...., )
n

A e e e


 is a dual 
0

P  ADL with a maximal element m  and 

Birkhoff center ,B then 
1i i

b e m e m


     implies 
i

b m e m    for every b B  and 

1 1i n   . Finally, we conclude this paper with the following theorem and it is derive directly 

from Theorem 2.5 and Theorem 2.7. 

Theorem 2.9. If 
0 1 1

( ; , , ...., )
n

A e e e


 be a dual 
0

P  ADL with a maximal element m  and Birkhoff 

center B  is the least chain base of a 
0

P  ADL, then !
i

e  exists and equals to 0  for 

1, 2 , ... 2 .i n   
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