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Problem 41:
(x575x\4 (x5+x\
For any number x, (x*+1)% + 4 +5(xd -2y = 3% 4] |
2 2 J
Solution:
4
(.5 A
LHS. of *= (x4 4 1)% + 5(x% —2)% +a| 232X |
Lz )
= [x10 + 4x'? + 6x8 + 4x* + 1] + 5[x!® — 8x1% + 24x8 — 32x* + 16]
4
X
+ Z[x16 —20x'? + 150x8 — ]

4
X
=81 +Z[x16 +4x1%2 + 6x8 + 4x* + 1]

4
x> +x

) =R.H.S

x4
=34+Z(x4+1)4=34+4<

@eeE@

Problem 42: NBSR Vol Il p 106

(4x° — 50)* + (4x* + D* + 5(4x* — x)* = 3* + (4x° + x)*

Solution:
L.H.S = (4x° — 5x)* + (4x* + 1)* + 5(4x* — 2)*
= x*(4x* — 5)* + (4x* + D* + 5(4x* — 2)*
= x*(256x1® — 1280x'? + 2400x® — 2000x* + 625)

+ (256x1° + 256x1% + 96x8 + 16x* + 1)
+ 5(256x1° — 512x'? + 384x8 — 128x* + 16)

=81 + x*(256x1% + 256x'%? + 96x8 + 16x* + 1)
=81+ x*(4x* + 1)* =81 + (4x° + x)* =RHS.of *
Note: This result can be realized by replacing x by (\/fx) in the problem no. 1*.
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Problem 43: NBSR Vol Il p 386

3%+ (2x* — D* + (4x® + x)* = (4x* + D* + (6x* — 3)* + (4x°> — 5x)* *
Solution: Comparing this result with the result 2, it can be hat it is sufficient to establish the
identity.

5(4x* — 2)* = (6x* — 3)* — (2x* — 1)*
1)

L.H.S of (1) = 5(256x® — 512x1% + 384x% — 128x* + 16)
= 1280x1° — 2560x1% + 1920x% — 640x* + 80
R.H.Sof (1) = (1296x'® — 2592x1% + 1944x8 — 648x* + 81)
— (16x1% — 32x1%2 + 24x8 — 8x* + 1)

= 1280x1® — 2560x'% + 1920x8 — 640x* + 80
This establishes the identity (1).
Substituting this in the result (2), we notice that
(4x3 — 50)* + (4x* + 1D* + (6x* — 3)* — (2x* — D* = 3* + (4x° + x)*
e, 3+ (2x* — D* + (4x° + x)* = (4x* + D* + (6x* — 3)* + (4x3 — 5x)*
This establishes the identity*
Note: The results 1, 2 and 3 above can be verified by the direct application of the identity
(a + b)* = a* + 4a®b + 6a?b? + 4ab3® + b*

elelelele;
Problem 44: NBSR Vol 11 p 386, B p 107

3% 4+ (2x* — D* + (4x° + x0)* = (4x* + D* + (6x* — 3)* + (4x3 — 5x)* «
Verification: For this the formula employed is (a + b)* = a* + 4a3b + 6a%b? + 4ab® + b*
Qx* —1)* = 2xH* +42xH3(-1) + 6(2x1)*(-1)? + 4(2xM)(=1)3 + (—-1)*

= 16x'% — 32x'? + 24x8 — 8x* + 1

And
(4x> 4+ x)* = x*(4x* + 1*
= x*H{(4x")* + 4(4xH)3 + 6(4x*)? + 4(4xH) + 1}

= x*(256x'° + 256x1% + 96x8 + 16x* + 1)

= 256x%% + 256x1% + 96x'? + 16x8 + x*

Then L.H.S of * = 3* + (2x* — 1)* + (4x° + x)*
= 16x'® — 32x'? + 24x% — 8x* + 81 + 1 + 256x%°
+256x1° + 96x1% + 16x8 + x*

= 256x20 + 272x1° + 64x1% + 40x8 — 7x* + 82
Further,

(Ax* +1D* = AxH* +4(4xM)3 + 6(4xH)? + 4(4xH) + 1
= 256x1° + 256x1% + 96x8 + 16x* + 1
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(6x* — 3)* = (6xM)* + 4(6xM)3(=3) + 6(6x*)?(—3)% + 4(6x")(=3)3 + (—3)*

= 1296x1® — 2592x'2 + 1944x8 — 648x* + 81

And

(4x> — 5x)* = x*(4x* — 5)*
= x*{(4x")* + 4(4xH)3(=5) + 6(4x1)?(=5)? + 4(4x")(=5)3 + (=5)*}

= x*{256x'® — 1280x'? + 2400x® — 2000x* + 625}
= 256x%° — 1280x'° + 2400x'? — 2000x® + 625x*

Then the RH.S of * = (4x* + 1)* + (6x* — 3)* + (4x3 — 5x)*

= 256x10 4+ 256x1% + 96x8 + 16x* + 1 + 1296x16 — 259212
+ 1944x8 — 648x* + 81 + 256x20 — 1280x° + 2400x12 — 2000x8

+ 625x*
= 256x20 + 272x16 + 64x12 + 40x8 — 7x* + 82
~LHS=R.H.S This verifies the formula/identity *.

An important note:

The result (3) yields that sum of the 4™ powers of three numbers of which is 3* as the
sum of the 4™ powers of three different numbers. By taking different values for x in this
identity, we get identities of the form 3% + a* + b* = ¢* + d* + e*:

x=1: 3*+1*4+5%=5%43%414 Trivial
x=2: 3*+127%+129* = 65* +93% + 118*
x=3: 3%*+161* +246* = 324* + 483%* + 9574

x=4: 3*+511* +4100* = 1025* + 1533* + 4076* ......... and so on.
elelelele)
Problem 45: Scribbling of S.R on p. 4 of NBSR Vol Il
If p>+q3+1r3=s? 1
Then (pa? + mab — rb?)3 + (qa? — nab + sb?)3 + (ra? — mab — pb?)3
= (sa® — nab + qb?)3 )
1 1
wherem = (s + q) (%)E and n = (r —p) (:Z)E 3)

And a and b are arbitrary quantities.

Proof:

Note: The expressions in each of the brackets () in (2) are homogeneous quadratics in a and b.
Consider the expression:

F(a,b) = (pa2 +mab—rb2)3 +(qa2 —nab +sb2)3 +(ra2 - mab —pbz)3 —(sa2 - nab +qb2)3 (4)

F(a,0) = (p2 + q> + 13 — s3)a® = 0 using the condition (1).

Nowwhen b = 0, F(a,b) = b°f(x) say (5)
In the above equation (5) x = a/b (6)
And

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page | 235



N.Ch.Pattabhi Ramacharyulu

fx)=@x*+mx—7)3+ (qx* —nx +s)3+ (rx®> —mx —p)3 — (sx? —nx + q)3

(")

We have to establish that F(a,0) =0 i.e. f(x) = 0 under the conditions (1) and (3)
stated in the problem, for all values of a and * for any .

Characterization of f(x):
(1 From (7), it can be noted that

F(0) =52 e xf () =@
From this follows that /(1) = —f(1) and f(—-1) =—f(-1) = f(1)=0=f(-1)
~ (x — 1) and (x + 1) are both factors of f(x)and so (x? — 1) is a factor of f(x).
(i) FO) = () +s3+(—p)* —q> =s?— (p> + ¢ +r3) = 0 (~condition (1))
= The constant (term independent of x) in f(x) = 0.
(iii)  Coefficientof x®in f(x) =p3+q®>+r3—-s3=0
(iv)  Coefficient of x° in f(x) = 3[mp? — ng? — mr? + ns?]
= 3[(p* —r)m + (s* — ¢*)n]
=3 [(pz =G + ) {52 + (52 = gD - p) {ﬂ}zl

S—q

=30 =P+ P+ -+ /- +p)]=0

=~ f(x) isa fourth degree expression in x for which x? — 1 is a factor; f(0) = 0 and f(1) =
f(—=1) = 0.Hence f(x)takes the form f(x) = Ax?*(x* — 1)

where A is a constant that makes (8) an identity.

Let x take the value such that x2=-1ie x=1i

Then f(i) = 24

ie2A=f)={mx—pP+r)P-{mx—pP+r3}+{—-q +nx}® +
{s+q—nx}?

Since x? = —1
By a straight forward simplification using the formula

a® + B3 = (a + B)(a? — af + B?) and noting that x* = —1, we get

f@=2{(s-q)° - @-77}+6{(+rIm? (s — q)n’} 9)
The first bracket of (9)= 2{(s — q)® — (p — )3}

=2{s*—q* —p’ —s° —3sq(s — @) —pr(p + 1)}

= —6{sq(s —q) +pr(p + 1)}
Using the condition and the second bracket of (9) after substituting for mand n from (3)

=6{(s+q*(s—q) - (r—p)*(r +p)} =6{[(s* +sg+q)(s—q) +
Sq(s—q)—12—rp+plr+p—rp(r+p) =653—q3+Sqgs—qg—r3+p3+rp(r+p)

=6{sq(s —q) + rp(p + q)} since s =p3 +q3 + 13
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Hence 2A=f(i) =0 2A4=0 > f(x)=0.
This establishes the identity (2) of the problem.

@eeee
Corollary: If a and b are arbitrary, then NBSR Vol Il p-266

(3a® + 5ab — 5b?)3 + (4a% — 4ab + 6b?)% + (5a% — 5ab + 3b?)3
= (6a® — 4ab + b?)3

Solution: Letp = 3;q =4;r =5;and s = 6
The choice evidently satisfies the condition p> + ¢° + s3 = 63
Further m = 5and n = 4 (from the relations (3))

Substituting these values for p, q,r,s,m and n in the identity (2) of the problem, we establish
the corollary stated.

Note: (1) The identification in this corollary is given by S.R as a problem seeking solution in
Journal of Indian Mathematical Society [Q.No. 44 Vol 6 (1914) p 226].

(2) This is also mentioned in Hardy G.H and Wright E.M — An Introduction to theory of Numbers
p. 201 (1960).

QEE@@@
S.R Entry
Ifa+ b+ c=0,then
(i) 2(ab + ac + bc)? = a* + b* + ¢*

(ii) 2(ab + ac + bc)* = a*(b — o)* + b*(c — &)* + c*(a — b)*
(iii) 2(ab + ac + bc)® = (a?b + b*c + c?a)* + (ab? + bc? + ca®)* + (3abc)*
(iv) 2(ab + be+ca)® = (a® + 2abc)* (b —)* + (6% + 2abc)* (e —a)* + (2 + 2abc)? (a - b)?

and so on.

Note: 1. “and so on “at the end of this entry indicates that S.R might have derived some more
formulas of this type.

2. This entry provides formulas for expressing a sum of 4™ powers as twice of a second, fourth,
sixth and eighth powers of ab + ac + bci.e.,2(ab + ac + bc)™*;n = 2,4,6,8.

3. The sum of the bases of the fourth powers in each of the R.H.S’s of the above results is equal to
zero. (An interesting observation)

clelalele)
Problem 46: NBSR Vol 11 385

If a+b+c=0,then2(ab+ ac + bc)? = a* + b* + ¢* *
Solution: a+b+c=0 = (a+b+c)>=0 = a?+b%*+c?=—-2(ab + ac + bc)

wat + bt + ¢t = (a® + b? +c?)? - 2(a’b? + a’c? + b?*c?)
= 4(ab + ac + bc)? — 2{(ab + ac + bc)? — 2(a’bc + ab’c + abc?)}

= 2(ab + ac + bc)? + 4abc(a+ b + ¢)
= 2(ab + ac + bc)? + 4abc(0)
= 2(ab + ac + bc)?

Hence the identity (*): a* + b* + ¢* = 2(ab + ac + bc)?

This is a classical result that would be employed in establishing many more results.
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2" Proof:
Consider the identity (4.1):

(a+b+c)—a*—b*—c*
=4(a+ b +c)*(ab + bc + ca) + 4(a + b + c)abc — 2(ab + bc + ca)?

When a + b + ¢ = 0, this reduces to - a* — b* — ¢* = —2(ab + bc + ca)?

and hence the result: a* + b* + ¢* = 2(ab + bc + ca)? (*)
QE@@@
Problem47: Ifa+ b + ¢ = 0, then
2(ab + bc + ca)* = a*(b — c)* + b*(c — a)* + c*(a — b)* *)
Solution: LetX = a(b—~c¢);Y =b(c—a)and Z = c(a — b) (1)
Then X+Y+2Z=0 @)
XY+ YP+ 20 =2(XY +YZ + ZX)? (3)

Now: XY =a(b—-c).b(c—a) =ab(b—-c)(c—a)
= ab{c(a + b) — ab — c?}
= ab{—ab — 2c¢?} (Sincea + b = —c)
= —ab(ab + 2c¢?)
Similarly XZ = —ac(ac + 2b?) and YZ = —bc(bc + 2a?)

~ XY +YZ+ZX = —{ab(ab + 2¢?) + ac(ac + 2b?) + bc(bc + 2a?)}
= —{(a?b? + a*c? + b*c?) + 2abc(c + b + a)}
= — {a®bh? + a*c? + b?c?}

= —{(ab + ac + bc)? — 2abc(a + b + ¢)}
= —(ab + ac + bc)? (4)

Using (1), (3)and (4) the identity (*)

2(ab + bc + ca)* = a*(b — c)* + b*(c — a)* + ¢*(a — b)* can be established.
Note: This identity is a special case of Ferrarai’s identity:

(a® + 2ac — 2bc — b*)* + (b? — 2ab — 2ac — c¢®)* + (c? + 2ac + 2bc — a®)*

= 2(a®? + b?> + c? —ab + ac + bc)*

Ref: Ferrarai F: Equation indetermimie [ L’Intermee Math Vol (6) 1909 p 82-83]

@E@E@@@
Problem 48: NBSR Vol Il p 385
If a+b+c=0,then
2(ab + ac + bc)® = (a?b + b*c + c?a)* + (ab? + bc? + ca®)* + (3abc)* (1)
Solution: Let
X = a?b + b*c + c?a;Y = ab? + bc? + ca® and Z = 3abc (2)
Notethat X +Y + Z =ab(a+ b) + bc(b + c) + ca(c + a) + 3abc
= ab(—c) + bc(—a) + ca(—b) + 3abc =0 (3
W XY+ Y+ 7Y =2(XY +YZ + ZX)? (4)
Now XY +YZ+ZX=XY +(X+Y)Z=XY — 272 ()
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And
XY = (a®b + b%c + c?a)(ab® + bc? + ca?)

= (a®b® + b3c3 + c3a®) + abc(a® + b3 + ¢3) + 3a?b?c?

=a3b® + b3c3 + c3a® + 6a?b?c?

= (ab + ac + bc)? +9a3b3¢3
Since (a3h3 + a3¢3 + b3¢3) = (ab + bc + ca)® + 3a?b?c? whenever a+b+c =0

= (ab + ac + bc)?® + Z?
. X+YZ+ZX=XY—2%=(ab+ ac + bc)? (6)
Using the equations (2), (4) and (6), we establish the identity (1):
2(ab + ac + bc)® = (a?b + b*c + c?a)* + (ab? + bc? + ca®)* + (3abc)?

@eE@@@
Problem 49: NBSR Vol Il p 385
Ifa+ b+ c = 0,then
2(ab + be + ca)® = (@% + 2abc)? (b —c)* + (b2 + 2abc)? (c—a)* + (% + 2abc)? (a-b)? (*)

Solution:
Let X = (a3 + 2abc)(b —c); Y = (b3 + 2abc)(c — a) and Z = (c® + 2abc)(a — b)
1)
Then
X+Y+Z=a*(b—c)+b*(c—a)+c*(a—b)
+ 2abc{(b—c)+ (c—a) + (a— b)}
= (a®b — ab®) + (b3c — bc3®) + (c3a — ca®)
=ab(a+ b)(a—b)+bc(b+c)(b—c)+calc+a)(c—a)
=—abc{(a—b)+(b—c)+(c—a)}=0 2)
and therefore  X* + Y* + Z* = 2(XY + YZ + ZX)? (3)
Now XY = ab(a? + 2bc)(b? + 2ca)(b — ¢)(c — a)
= ab{a®b? + 2c(a® + b3) + 4ab?*c*}{c(a + b) — ab — c?}
= ab{a?b? + 2c(3abc — c3) + 4ab?*c?}{—ab — 2c?}
= —{a*b* + 12a3b3c? + 18a*b?*c* — 4abc®}
4
Similar expressions for YZ and ZX can be written by cyclic symmetry using (4).
Adding these three results, we get XY + YZ + ZX = —[(a*b* + b*c* + c*a*) +
12a2b2c2ab+ac+bc+

18a2b2c2al+b2+c2—4abc(a5+b5+c5)=
[{(ab + ac + bc)* + 4a’b?c?(ab + ac + bc)} + 12a%b%c?(ab + ac + bc)

+18a?b?c?{—2(ab + ac + ca)} — 4abc{—5abc(ab + ac + bc)}] = —[ab + ac +
bcd (5)
In view all the above results (1) — (5) the truth of the identity *:
2(ab + ac + bc)® = (a® + 2abc)*(b — ¢)* + (b3 + 2abc)*(c — a)*

+(c3 + 2abc)*(a — b)* Is established.

elelelele
Problem50: Ferrai (1909) — Garardin (1911) Identity
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Ifa+b+c=0,then
(a® + 2ac — 2bc — b?)* + (b? — 2ab — 2ac — c®)* + (c? + 2ab + 2bc — a?®)*

=2(a? + b?>+c? —ab +ac + bc)* *)
Solution: Let
X =a?+2ac—2bc—b?* =(a+c)*>—(b+c)?> =b?—a? (1.1)
Y = b%? —2ab —2ac—c? = (b—a)* - (a+c)?
=(b—-a)*—(=b)?=a%*—-2ab (1.2)
And
Z =c?>+2ab+2bc—a®*=(b+c)*>—(a—Db)?
= (—a)? — (a — b)? = 2ab — b? (1.3)
It can be noted that
X+Y+Z=0 @)

Further,
az+b2+c2—ab+ac+bc=%[(a+c)2+(b+c)+(a—b)2]
= 2[(=b)* + (=a)? + (a — b)?] = a® — ab + b? @3)
Then the L.H.S of the identity * = X* + Y* + zZ*
=2(XY + XZ +YZ)? = (XY — Z%)? (4)
And
XY — 7% = (b? — a®)(a® — 2ab) — (2ab — b?)?
= (b%*a® — 2ab® — a* + 2a®b) — (4a*b? — 4ab® + b*)
= —(a* — 2a®b + 3a?b? — 2ab3® + b*)
= —(a? — ab + b?)? (5)
From the equations (1) — (5), we natice the validity of the identity *.

Note: The identity * can be written as
{(a=c)?-b-)Y+{(b-a)’) - (c—a)’}+{(b—c)—(b—a)}*
=2{c=-b)a—c)+(c—=-b)b—a)+(a—c)(b—a)}*

Replace inthisc — b,a — ¢, b — a by a, b, c respectively, we then get

(b? — a®)* + (c? = b*)* + (a® = c®)* = 2(ab + ac + bc)*

ie., a*(b—c)* + b*(c —a)* + c*(a — b)* = 2(ab + ac + bc)*
elelelele
Problem 51: (An S.R type problem not from NBSR)

Ifa+b+c=0,then

ab + b3c + c:';a}4 N {ab3 + bcd + ca3}4 N {a4 + b* + c4}4

8 _
2(ab + ac + bc) —{ NG Ne Ne

Solution:
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Let X =a3b+b3c+c3a; Y= ab®+bc®+ca’and Z = a* + b* + ¢* (1)
Then

X+Y+Z=ab(a®+ b?») + bc(b? + c?) + ca(c?® + a®) + a* + b* + ¢*
= ab{a® + b? + ¢? — c?} + bc{a® + b? + c? — a?} + ca{a® + b* +
c2—b2+ad+04+c4
= (ab + bc + ca)(a? + b% + ¢?) —abc(c + a + b) + a* + b* + ¢*

= (ab + ac + bc){—2(ab + ac + bc)} + 2(ab + ac + bc)?
= —2(ab + ac + bc)? + 2(ab + ac + bc)?
=0 2
XY+ YR+ 20 =2(XY +YZ + ZX)? (3)
Now XY +XZ+YZ=XY—Z?
XY = (a®b + b3c + c3a)(ab?® + bc3 + ca®)
= a*b* + a®b?c® + abbc + b*c* + a®b3c? + ab®c + cta* + a?b3c? + abc®
= {a*b* + b*c* + c*a*} + a’b?c?(ab + ac + bc) + abc(a® + b® + c°)
And
7% =a® + b® + c® + 2(a*b* + a*c* + b*ch)
“XY+YZ+ZX=XY—-Z?
= —(a® + b8 + c®) — (a*b* + a*c* + b*c*) + a’b?c?(ab + ac + bc) +abc(a® +
b5+ch5
= 8a’b?*c?(ab + ac + bc) — 2(ab + ac + bc)* — (ab + ac + bc)*
—4a’b?c?(ab + ac + bc) + a’b?c?(ab + ac + bc) + abc{—5abc(ab + ac + bc)}

= —3(ab + ac + bc)*
Substituting these values in (3), we have
(a®b + b3c + c3a)* + (ab® + bc® + ca®)* + (a* + b* + cH)*
= —2{-3(ab + ac + bc)*}?
= 18(ab + ac + bc)®
Dividing by 9 and interchanging the L.H.S and R.H.S, we write

1
2(ab + bc + ca)8 = —{(a3b + b3c + caa)4 + (ab3 + bc3 + ca?’)4 + (a4 + b4 + c4)4}
9

ja3b+b3c+c3al Jab3+bc3+ca3l ja4+b4+c4l

- E EEVCR N BNC)

This establishes the result which is an S.R type result (not from NBSR).
Note: Many more identities of this type can be conceived.
Q0EE@@@

Scribbling of S.R p. 338 VVol.Il NBSR

I x5—a_y5—b

xz_y_yz_xS(xy_l)
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x" —a y’ —b

= =7(xy—1
R A ) L A
x°—a . y5—b
x2—y  y2—x
for x and y, where a and b are arbitrary.

I1.

5(xy — 1) (1)

Problem: Solve the equation pair:

Solution: Let a, B, y be three quantities satisfying the restriction

a.B.y=1 )
but otherwise arbitrary. Further, we take

x=a+p+yandy=aff + Ly +ya 3)
From(1) x°—a=5x%—-y)(xy—1) (4.1)
and y> —b =5@?—x)(xy—1) (4.2)

Substituting x and y from (3) in the above two equations,
(@+B+y)°—a=5{(a+B+y)*—(af + By +ya)}

{a+B+y)af+By+ya) -1} (5.1)
and
(aB + By +ya)® —b =5{(aB + By +ya)* — (@ + B + 1)}
{a+B+y)af+By+ya) -1} (5.2)
Let us recall the identities for (a+ B +7¥)° and (af + By + ya)®, coupled with the
restriction (2): afy = 1: given in Appendix No. 5;

The equations (1) and (2)of Appendix (5) are
(@+p+y)°=a’+p°+y° +5{(a+p+y)* - (af + By +ya)}

{a+B+y)ap+pBy+ya) -1} (6.1)
and
(aB + By +ya)®
= ()’ + (BY)° + (ya)* + 5{(aB + By +ya)* — (a + B + 1)}
{a+B+y)(af+By+ya)—1} (6.2)
The equation (5.1) and (5.2) now reduce to
S+p5+yS=a (7.1)
(@B)® + (By)> + (ya)* = b (7.2)
together with the restriction (2) which can be written as
a’By =1 (7.3)
The three equations (7.1) — (7.3) suggest that a®, 35 and y° are the roots of the cubic equation:
t3—at?+bt—1=0 (8)

Denoting the roots of this cubic by 71 (= @®); r,(= B°) and 13, (= y>) then their fifth roots

are
a=nr'""; ﬁzrzl/sandyzr;/S 9

It can also be recalled that

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page | 242



Some Elementary Problems from the Note Books of Srinivasa Ramanujan 1V

t=cosz?ﬂ+isin2?ﬂ, t>=1 (10)

is the primitive complex fifth root of unity. Let this quantity be denoted by w. Then w® = 1.

The equations (7.1) — (7.3) remain unchanged if a, § and y are replaced by ao™; Bw" and yo®
respectively whenever m + n+ p =a multiple of 5for (m,n,p) = (0,1,2,3,4).

~ The possible values of x are now a+B+y;a+pfo+ynt; aw+p+

yo*; aw + pw* +y; aw + fw + yod; aw + fwd +yw; aw? + fw +

yw (11)

In fact there are 25 solutions for x and correspondingly 25 values for y and the corresponding
values of y
are af +

afw® + fyw® + yaw?; afw® + fyw® + yaw®; afw®+ fyw® +yaw®
ya; afw + By + yaw4; afw + Bya)4 +ya; aff + [)’ya)4 + yaw;

By +

The complete set of solutions (x, y) of the problem are presented here under.

Table showing the roots (x, y) of the given pair of equations (1).

X y
a+p+y af + By +ya=af + By + ya
a+ fw +yw? afw + fyw® + yaw*=afw + By + yaw*

aw + fw? + yw? afw? + Byw® + yaw3=afw? + By + yaw?

a+ Bw? + yw? afw? + Byw® + yaw?=afw? + By + yaw?
a+ pfw* +yw afw* + Byw® + yaw=afw* + By + yaw

aw + B + yw* afw + fyw* + yaw’=afw + fyw* + ya

aw + fw + yw? afw? + Byw* + yaw*=afw? + Byw* + yaw*

aw + fw? + yw? afw? + Byw* + yaw3=afw?® + fyw* + yaw?

aw + fw? +yw afw* + Byw* + yaw?=afw* + fyw* + yaw?

aw + fw* +y afw® + Byw* + yaw=ap + fyw* + yaw

aw? + B +yw? afw? + Byw? + yaw’=afw? + Byw? + ya

aw? + fw + yw? afw? + Byw? + yaw*=apw?® + fyw? + yaw*

aw? + fw? + yw afw* + Byw? + yaw3=afw* + fyw? + yaw?

aw? + w3 +y afw® + Byw? + yaw?=af + fyw? + yaw?

aw? + po* +yw?t | afw® + fywd + yawb=afw + fyw? + yaw

aw? + B+ yw? afw? + Byw? + yaw® = afw? + fyw? + ya

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page | 243



N.Ch.Pattabhi Ramacharyulu

awd + pw + yw afw* + Byw? + yaw*=apw* + pyw? + yaw*

awd + pw? +y afw’ + fyw® + yaw3=ap + fyw? + yaw?

aw’ + w3 +yw* afwb + Pyw’ + yaw’=afw + Byw? + yaw?

awd + pw* +yw® | afw’ + Byw’ + yawb=afw? + fyw? + yaw

aw* + B +yw afw* + Byw + yaw’=afw* + fyw + ya

aw* + fw +y afw® + Byw + yaw*=af + fyw + yaw*

aw* + pw? +yo* | afw® + Pyw® + yawl=afw + fyw + yaw?

aw* + pw* +yw? | afwd + Byw® + yawb=afw? + fyw + yaw

aw* + pwd +ywd | afw’ + Byw® + yaw’=afw? + fyw + yaw?

The problem now boils down to the problem of finding &, 8, ¥ the roots of a cubic (polynomial)
equation (8). The method of solving the cubic is presented in the Appendix.

QEE@@@

Problem 52: NBSR Vol Il p. 338
Solv7e the equation7pair:
i (yzy—x_)gﬂ =70y =1) €
for x and y where a and b are arbitrary.
Solution: Let the solution be setinthefoomx =a + f +yandy = aff + By + y«a 2)
with the restriction

afy =1 ©)
From(1) x” —a = 7(xy — D{(x? — y)? + x} (4.1)
and  y' —b=7(xy—-D{H*-x)?*+y} 4.2)

Substituting the assumed solution (2) in the above two equations (4.1, 4.2) yields

(@a+B+y) —a=7{(a+pB+y)(aB+ By +ya) — 1}
{[a+B+y)*—(aB+ By +ya)]* + (a+ B +y)} (5.1)

and (af + By +ya)’ —b="T7{(af + By +ya)(a+ B +y) — 1{[(aB + By + ya)* -
a+pL+y2+af+Ly+ya(5.2)

Comparing these two equations (5.1) and (6.12) with the equations given ldentity 1.7 with the note

3 (afy = 1) of the appendix

We see that

@ +@B)+@) =a (6.1)
and (af)” + (By)" + (ya)” = b (6.2)
togetherwith a’B7y’ =1 (6.3)

. a’,B’,y’ are the roots of the cubic

t3—at?+bt—1=0 (7)
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Letry (= a”),r,(= B7) and r3(= y7) be the three roots of the cubic (7), then

a = r11/7,[3 = r21/7 and y = r31/7 (8)
It can also be recalled that
i
7 )
is the primitive seventh root of unity.

s=c0527”+isin s’=1 9)

The three equations in (7) remain unchanged when «, 8,y are replaced by as™, fs™ and ysP
where m + n + p isamultiple of 7 when (m,n,p) = (0,1, 2,3,4,5,6)

m,n and p take one or other seven values 0, 1, 2, 3, 4, 5, 6.
= The possible values of x arenow a + f +y; a +sf +s°y; sa +s®B +y; sa + f +
6y .
sby;
sa+sp +s°y;sa+s°B +sy;sa + sB + sy; sa+s%f +styandsa + s*p +s%y
and correspondingly the values of y are
af + By +ya; afs + By + yas®; af + Pys® +yas; afs + Pys® +ya;

afs? + Bys® + yas®; afs® + Bys® + yas?; afs® + Bys? + yas®and afs® + Bys® + yas?

elelelele;
Problem 53: Solve the equations for x, y and z:

x+ay+a’z+a*>=0
x+by+b*z+b3=0
x+cy+ciz+c3=0 *)
Solution: The three given equations can be written as
ad+a’z+ay+x=0
b3+ b%z+by+x=0

cA+c?z+cey+x=0 )
An inspector of these equations suggest that the roots of the equation

t3+zt> +yt+x=0 2
are a, band c.

= The sum of the roots of the equation (2)=a+b+c = —2z

Sum of the roots taken two at a time = ab + bc + ca = +y and product of the roots: abc = —x.
~ x=—abc; y=ab+bc+ca and z=—(a+b +0)

is the solution of the given set of equations *.

@eeee
Problem 54: NBSR Vol Il p 325
If a, B,y be the roots of the equation
x3—ax?+bx—1-0 1)
then Ya+3iB+3i¥y=Va+6+3t (2.1)
and  aB + 3By +3¥ya=Vb+6+3t (2.2)
where t3—3t(a+b+3)—(ab+6.a+b+9)=0 ®)

Solution: a, B,y are the roots of the cubic equation (1).
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Thena+f+y=a; af+By+ya=>b and afy =1 4)

The results (2.1) —(2.2) follow if we can find the cubic equation whose roots are
a1/3,[)’1/3 and )/1/3.

Let this cubic be

723 —pz?+qz—-1=0 ®)
The product of the three roots of the equation (5) = a%ﬁ’%y% = (aﬂy)% =1 because of the last
equation of (4). Hence the last term of the above cubic (5) is taken as (-1).
Then

B+ R +y 3 =pand (aB)'/+ BN+ ya)'? =¢q (6)

Determination of p and q establishes the required result.

z3—1=pz’—qz (7)
f @ =1 = (pz? — q2)?
=p®2° — ¢°2° = 3pqz° (pz* — q2) 8
which on using (7) reduces to
(z° —1)° =p°2° - ¢°2° = 3pqz*(z° - 1) 9

Assuming u = z3
The equation (9) after rearranging terms, can be written as

wW—(+3+p° -3pu?+(B3+q¢*>-3pQu—-1=0 (10)
The roots of this cubic are a, 8, y. Hence on comparing the equations (1) and (2), we notice that

3+p3-3pg=aand 3+q3—-3pg=0>b (12)
Let us introduce a number t defined by

p>P=a+6+3t (12)
Then from the first of the equations (6)

alB+pB3 4y 8 =p=3Ya+6+3t n (13)

Also g3 =b—3+3pq from the second equation of (11)
=b—3+B+p®—a) from the first equation of (11)
=b-—a+p3 (substitute p3 from (12))
=b—a+a+6+3t
=b+6+3t (14)
Hence from (6); (12) and (14), we have
alB+ B+ ylS=p=Va+6+3t
And
(@B)? + (B3 + ya)/? =q=Vb+6 + 3t
The two relations establish the results (2.1) and (2.2). Here t is a parameter.
From the first of (11) and (12)
a+3pqg—-3=p3=a+6+3t
= pqg=t+3 (15)
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t+3)2=(q)?=p3¢®>=(a+6+3t)(b+6+3t) (16)
(equations (12) and (14) are employed here)

L.H.Sof (16) = t3 + 9t% + 27t + 27

R.H.Sof (16) =9t? + 3t(a+ b+ 12) + (a + 6)(b + 6)

. equation (16) reduces to

t3—3t(a+b+3)+(ab+6a+b+9)=0

which is the required relation: (3)

@eEE@
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