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Abstract: The problem of steady boundary layer flow over an exponentially stretching surface is studied. 

The governing partial differential equations are converted to yield a system of non-linear, coupled, 

ordinary differential equations by a similarity transformation group. These equations are analytically 

solved via VIM-Pad`e  technique which is a combination of the Variational Iteration Method (VIM) and the 

Pad`e  approximation for a benchmark testing of alternative numerical solutions. The physical parameters 

of interest (Prandtl number, Pr  and stretching parameter, k ) sensitively influence the local Nusselt 

number, )0(  , thereby affecting the thermal boundary layer thickness. It is found that the rate of heat 

transfer from the fluid to the surface increases with increasing physical parameters. The VIM-Pad`e is 

implemented without requiring linearization, discretization, or perturbation. The results demonstrated 

reasonable degree of agreement when compared to other techniques and numerical methods reported in the 

literature. This suggests that the VIM with the enhancement of Pad'e; approximation is a very effective, 

convenient and quite accurate tool that requires further investigations by its application to viable 

technological and engineering problems that lead to nonlinear partial or differential equations. 

Keywords: Boundary Layer Flow; Finite Difference Technique; Pad`e Approximation; Variational 

Iteration Method. 
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1. INTRODUCTION 

Boundary layer flow is a subject of high interest in physics, fluid mechanics and engineering 

processes due to the associated viscosity effects on the bounding surface. There are quite a 

number of occurrences of boundary-layer flow and heat transfer of viscous fluids over a stretching 

surface in manufacturing processes, such as wire drawing, metal and polymer extrusion, drawing 

of copper wires, hot rolling, paper production, glass-fiber, glass blowing, electronic chips, crystal 

growing, and metal spinning [1, 2]. Magyari and Keller [3] investigated boundary layers on an 

exponentially stretching continuous temperature distribution. It was observed that the kinematics 

of stretching and the simultaneous heating or cooling during such processes have a decisive 

influence on the quality of the final products. For example, the knowledge of flow and heat 

transfer within a thin liquid film is crucial in understanding the coating process and design of 

exchangers and engineering equipments [4]. It is emphasized here that the subject of heat transfer 

is of fundamental importance in many branches of engineering such that it enables the study of 

various thermodynamic processes and their effects in equipment design (heat transfer 

enhancement), insulation properties, material selection, bio-heat transfer and many more [5]. The 

monitoring of extrusion stability of thin film layers is aimed at controlling the coating efficiently 

to maintain the surface quality of extrudes, and this is very important in textile and plastic 

industries. The problem of boundary layer on an exponentially stretching sheet has been extended 

to incorporate many other effects such as viscous dissipation [6], thermal radiation [7], 

magnetohydrodynamics [1] and many more. All these are to demonstrate the very many 
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applications of the boundary layer flow on a continuous stretching sheet in industrial 

manufacturing processes. Just as there are many varieties of applications, different solution 

methods are advanced for the governing equations ranging from analytical to numerical, 

depending on the nature of the problem. 

Most problems encountered in engineering and technological fields are governed by linear or 

nonlinear partial or ordinary differential equations. The solutions of these equations are not easily 

amenable to exact results. Therefore, the development of approximate techniques that are geared 

towards providing at least simple approximate analytical solutions for validating numerical results 

is apparently common and very much in order. The expected outcome of these methods is to 

reveal the characteristics or phenomenon under study. Of course, analytical and numerical 

investigations are complementary.  

It is the objective of this paper, therefore, to construct an analytical result complemented by 

numerical solution to the problem of boundary layer flow over an exponentially stretching surface 

via VIM-Pad`e. The sections followed hereafter respectively are: the mathematical formulation of 

the problem, the construction of the solution via variational iteration method, the Pad`e 

approximation, discussion of results and general concluding remarks of the results of the previous 

sections. 

2. MATHEMATCAL FORMULATION 

Mohyud-Din et al. [8] investigated the problem of steady boundary layer flow on a continuous 

stretching surface, when the velocity and temperature of the surface varies exponentially with the 

distance along the sheet. The laminar boundary layer equations expressing the conservation of 

mass, momentum, and energy of the Newtonian fluids in the absence of free convection in the 

momentum equation are written as follows: 
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where x  and y axes are taken along and perpendicular to the plate, respectively, and u  and v  

are the velocity components parallel and normal to the plate, respectively,   is the fluid density, 

  the kinematic viscosity,   the thermal conductivity, 
p

c  the specific heat and T  the fluid 

temperature in the boundary layer. The appropriate accompanying boundary conditions are 
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where 0 > L  is a reference length, and 0 > 
0

U , a reference velocity parameter of the stretching 

surface, and 
0

T  a reference temperature of the temperature distribution in the stretching surface 

and k  the stretching parameter in the surface. 

 

The continuity equation (1) could be satisfied by introducing a stream function ),( yx such that 
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The momentum and energy equations (2, 3) could be transformed into corresponding 

nonlinear ordinary differential equations via the similarity transformation group: 
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where   is the similarity variable,  f  is the dimensionless stream function,    is the 

dimensionless temperature and primes denote differentiation with respect to  . Therefore, the 

transformed ordinary differential equations are: 
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where 



p

c
Pr  is the Prandtl number, which is the ratio of viscous to thermal diffusion. The 

transformed boundary conditions are: 
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From the physical point of view, the quantities of interest are the skin friction coefficient,  0f   

and the local Nusselt number,  0  , which represent the wall shear stress and the heat transfer 

rate at the surface, respectively. The momentum equation (7) is standing alone but is nonlinear 

and is coupled to the energy equation (8). The attempt to obtaining exact analytical solutions to 

these equations is elusive, but approximate analytical and numerical results are in order. The main 

thrust of this paper, therefore, is to construct approximate analytical solutions for the computation 

of the skin friction coefficient,  0f   and the local Nusselt number,  0   via VIM-Pad`e. 

3. VARIATIONAL ITERATION METHOD (VIM) AND PAD`E APPROXIMANT 

The VIM is an effective approximate analytical method for solving various kinds of linear and 

nonlinear problems encountered in chemical, ecological, biological, and engineering applications 

[9, 10]. The method is a modified general Lagrange’s multiplier method [11]. The main feature of 

the method is that the solution of a mathematical problem with linearization assumption is used as 

an initial approximation or trial function. Then a more highly precise approximation at some 

special point could be obtained. This approximation converges rapidly to an accurate solution. To 

illustrate the basic concepts of the VIM, the following nonlinear differential equation is 

considered: 

),( tgNuLu                                                                                                                  (10) 

where L is a linear operator, N  is a nonlinear operator, and )( tg  is an inhomogeneous term. 

According to the VIM, a correction functional is constructed as follows: 
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where    is a general Lagrangian multiplier, which could be identified optimally via the 

variational theory, the subscript n  denotes the thn -order approximation, 
n

u  is considered as a 

restricted variation, that is,   .0
n

u  

Now constructing a correction functional to the momentum and energy equations (7, 8) 

respectively in the form: 
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yield the following stationary conditions: 
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The Lagrange multipliers, therefore, are identified respectively as 
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Now, let    0f  and     0 . Therefore, the equations for the respective iterative solutions 

for momentum and energy now become 
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Consequently, the first three iterations of the momentum and energy equations are respectively: 
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Thus, the solutions of the momentum and energy equations are respectively approximated by the 

series solution:   

 
2

ff  ,                                            (20) 

 
2

  .                      (21) 

For want of more accuracy, as many iterations as possible may be computed, but with much 

lengthier expressions. One advantage of VIM is that in some physical problems only few 

iterations may be computed and it converges to the required result. Considerations of the 

convergence of VIM are elsewhere reported in literature [12]. The main task now is to obtain 

numerical values of   and  , respectively, using the asymptotic condition 

(       as0,0f ). It is pertinent to note that this condition could not be 

applied directly to the results (20, 21). It is known that this goal could be achieved via pad`e 

approximant, which has the advantage of converting the series solutions to rational functions [13 - 

16]. 
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Pad`e approximations are derived by expanding a function as a rational polynomial of two power 

series. These approximations are usually called Pad`e approximants, which are usually superior to 

Taylor expansions, especially when the functions contain poles. The rational approximation of a 

truncated series solution )( xf , say, of order at least  MN   on  ba ,  is the quotient of two 

polynomials  xP
N

 and  xQ
M

 of degree N  and M , respectively. The power series 
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This implies that without loss of generality, assume the normalization condition 1)0( 
M

Q . 

Further, 
N

P and 
M

Q have no common factors. This requires that )( xf equals the 

 MN / approximant through 1 MN terms. The pad`e method is to make the maximum error 

as small as possible. Built-in utilities of symbolic computing packages such as Maple or 

Mathematica could be used to obtain the Pad`e approximants of different orders  MN /  

efficiently. It is known that the diagonal approximants  MN /  like 

         6/6or5/5,4/4,3/3,2/2  have been confirmed to be most accurate approximants [8]. In 

this paper, the diagonal approximants      4/4and3/3,2/2  are used for the computations. 

4. DISCUSSION OF RESULTS 

The nonlinear ordinary differential equations (7, 8) subjected to (9) have been solved using the 

VIM-Pad`e. Using the Pad`e      4/4and3/3,2/2 , the results (20, 21) uniquely determine the 

wall shear stress,  0f   as  -1.290994, -1.276792 and -1.290957, respectively, while numerical 

solution gives -1.281816, which corresponds to the result obtained by Bidin and Nazer [17]. Note 

that the numerical computation uses a finite difference technique with Richardson extrapolation, 

which is unconditionally stable [18] and was implemented in MAPLE. To select   for the 

numerical solution, some initial guess value is used to solve the problem with some particular set 

of parameters. The solution process is repeated with another larger value of   until two 

successive values of the results differ only after desired digit(s) signifying the limit of the 

asymptotic boundary. Therefore, in the computations for the value of   use is made of the value 

of 276792.1 , which is obtained from the Pad`e   3/3 . 

Table 1 displays the heat flux,  0   as computed from the result (21) by the use of Pad`e  3/3  

and are compared with those obtained by Magyari and Keller [3] utilizing shooting method (SM) 

and approximation formula (AF), Mohyud-Din et al. (2010) using Homotopy Perturbation 

Method, and numerical results obtained for several values of Pr  for 3k . It is observed that 

there is high correlation between VIM-Pad`e and those reported in Magyari and Keller (1999), 

Mohyud-Din et al. (2010) and the numerical results. This demonstrates the effectiveness of the 

VIM-Pad`e. 

Table 1. Heat flux at the surface,  0  for several values of Pr for 3k  

Pr  Magyari and Keller (1999) 

      SM                     AF 

Mohyud-Din et al. (2010) 

            [3/3] 

     Present Results 

Numerical, VIM-Pad`e 

0.5 

1 

3 

5 

8 

-1.008405,           -0.990315 

-1.560294,           -1.550413 

-2.938535,           -2.939387 

-3.886555,           -3.890628 

-5.000460,           -5.006760 

        -1.0014 

        -1.5631 

        -2.9127 

        -3.8357 

        -4.9197 

-1.009281,       -1.007413 

-1.560295,       -1.544487 

-2.938531,       -2.960783 

-3.886552,       -3.902319 

-5.000461,       -5.002728 
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10 -5.628190,           -5.635360         -5.5311 -5.628194,       -5.621850 

It is also observed from the Table 1 that as the Prandtl number increases, the heat flux  0   

decreases. Physically, since the Prandtl number is a measure of the ratio of viscous to thermal 

diffusion, increase in the Prandtl number indicates a decrease in the thermal diffusion, thereby 

reducing the thermal boundary layer thickness, and hence increases the rate of heat transfer at the 

surface. 

Table 2 displays the heat flux determined by the VIM-Pad`e  2/2  and  3/3  for several values 

of k  for 1Pr   and 10Pr  , where the VIM-Pad`e   2/2  and   3/3  are shown respectively in 

brackets in the present results column. It is observed that for a given Prandtl number, the heat flux 

decreases with increasing stretching parameter. The increasing negative values of the wall 

temperature gradient are indicative of the physical fact that the heat flows from the ambient fluid 

to the plate surface. 

Table 2. Heat flux determined using the VIM-Pad`e  2/2  and  3/3  for several values of k  for 1Pr   

and 10Pr  , respectively 

k  Mohyud-Din et al. (2010) 

        1Pr   

 

   2/2                   3/3  

Present Results 

     10Pr   

Numerical 

(VIM-Pad`e) 

 

Mohyud-Din et al. (2010) 

         10Pr   

    

   2/2                  3/3  

Present Results 

      1Pr   

Numerical 

(VIM-Pad`e) 

 

5 -2.0250,           -2.0261 -2.026967 

(-2.001745) 

(-2.059560) 

-7.4219,           -7.0665 -7.111832 

(-7.423252) 

(-6.974107) 

7 -2.4593,           -2.4164 -2.418099      (-

2.460770)    (-

2.387348) 

-8.6742,           -8.3114 -8.349557       

(-8.675419)     

(-8.137707) 

8 -2.6404,            -2.5924 -2.594451      (-

2.641745)    (-

2.561167) 

-9.2422,           -8.8699 -8.907038       

(-9.243458)     

(-8.694616) 

9 -2.8112,            -2.5924 -2.760860      (-

2.812579)    (-

2.725145) 

-9.7795,           -9.3962 -9.432952       

(-9.780732)     

(-9.218065) 

10 -2.9735,            -2.9162 -2.918817      (-

2.974798)    (-

2.880761) 

-10.2904,         -9.8953 -9.932092       

(-10.29161)     

(-9.713659) 

5. CONCLUDING REMARKS 

The problem of the boundary layer flow over an exponentially stretching surface has been 

examined. Analytical solutions of the flow variables are presented via VIM-Pad`e technique. It is 

generally observed that the physical parameters (that is, the Prandtl number, Pr  and stretching 

parameter, k ) entering the problem significantly influence the flow variables. The results 

demonstrated reasonable degree of agreement when compared to other techniques and numerical 

methods reported in the literature. This suggests that the VIM with the enhancement of Pad`e 

approximation is a very effective, convenient and quite accurate tool that requires further 

investigations by its application to viable technological and engineering problems that lead to 

nonlinear partial or differential equations. The main conclusions are the following: 

1. The heat flux decreases with increasing Prandtl number for a given stretching parameter. 
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2. The thermal boundary layer thickness decreases with increasing Prandtl number, implying a 

slow rate of thermal diffusion. Therefore, higher Prandtl number leads to faster cooling of the 

surface. 

3. For a given Prandtl number, the heat flux decreases with increasing stretching parameter. 

4. The negative values of the wall temperature gradient are indicative of the physical fact that the 

heat flows from the plate surface to the ambient fluid. 

5. The VIM-Pad`e technique vis-a-vis the analytical solution can minimize time wasting and 

complicated calculations of numerical methods and many successive approximations. 
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