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Abstract: A total dominating set of a graph G is a set of the vertex set V of G such that every vertex of G 

is adjacent to a vertex in S. In this paper, we have developed an algorithm to find the minimal total 

dominating set of the generalized Petersen graphs 𝑃(𝑛, 𝑘) when 𝑛 ≥ 2𝑘 + 1, 𝑘 = 1,2. 
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1. INTRODUCTION 

Cockayne et al., [1] have introduced the concept of total domination set in graphs and this field is 

under the study of many researches. Teresa et al., [2] have given the comprehensive treatment of 

theoretical, algorithmic and application aspects of domination in graphs in detail and a survey of 

several advanced topics in dominations are also given. 

In any real world situation which can be modeled by a graph and where domination is of interest, 

the particular locations commanding high domination values-strategic high grounds are obviously 

important. 

Definition 1.1The open neighborhood of a vertex 𝑣 ∈ 𝑉 𝐺 is denoted by 𝑁(𝑣) and is defined as 

𝑁 𝑣 =  𝑢 ∈ 𝑉 𝐺  𝑢𝑣 ∈ 𝐸(𝐺)} 

The closed neighborhood of a vertex 𝑣 ∈ 𝑉 𝐺  is denoted by 𝑁[𝑣] and is defined as                        

𝑁 𝑣 = 𝑁 𝑣 ∪ {𝑣} 

Definition 1.2 The set 𝑆 ⊂ 𝑉 of vertices in a graph 𝐺 = (𝑉, 𝐸) is a dominating set if every vertex  

𝑣 ∈ 𝑉 is an element of 𝑆 or adjacent to an element of 𝑆. 

Definition 1.3 A dominating set 𝑆 of 𝐺 is a total dominating set of 𝐺 if every vertex of 𝐺 is 

adjacent to a vertex in 𝑆 and we represent it as 𝑇𝐷 − 𝑠𝑒𝑡. 

Thus, a set 𝑆 ⊆ 𝑉 is a𝑇𝐷 − 𝑠𝑒𝑡 in 𝐺 if 𝑁 𝑆 = 𝑉. 

Definition 1.4 The total domination number of 𝐺, denoted by 𝛾𝑡(𝐺), is the cardinality of the 

minimal 𝑇𝐷 − 𝑠𝑒𝑡 of 𝐺 

Definition 1.5 Let 𝑛, 𝑘 be positive integers such that 𝑛 ≥ 3and 1 ≤ 𝑘 ≤  
𝑛

2
 . The generalized 

Petersen graph 𝑃𝑛,𝑘  is the graph whose vertex set is  𝑎𝑖  , 𝑏𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛  and whose edge set is 

  𝑎𝑖 , 𝑏𝑖 ,  𝑎𝑖 , 𝑎𝑖+1 ,  𝑏𝑖 , 𝑏𝑖+𝑘 : 1 ≤ 𝑖 ≤ 𝑛  where 𝑎𝑛+𝑐 = 𝑎𝑐  and 𝑏𝑛+𝑐 = 𝑏𝑐  for every 𝑐 ≥ 1. 

Throughout this paper, we take the outer vertices as 𝑢1 , 𝑢2 , … 𝑢𝑛 and the inner vertices as 

𝑣1 , 𝑣2 , … 𝑣𝑛 for 𝑃 𝑛, 𝑘 . 

2. TOTAL DOMINATING SET OF THE GENERALIZED PETERSEN GRAPHS 𝑷(𝒏, 𝟏) 

Theorem 2.1 The minimal total dominating set for the generalized Petersen graphs𝑃(𝑛, 1) with 

𝑛 ≥ 3 except 𝑛 = 7 is given by 
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𝑇𝐷 =  
𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

  

 

Proof. Let𝑛 ≥ 3 and 𝑛 ≠ 7. The vertex𝑢1+3𝑖 dominates the vertices 𝑢3𝑖 , 𝑢3𝑖+2 and 𝑣1+3𝑖  for 

1 ≤ 𝑖 <  
𝑛

3
  (modulo addition i) ; and the vertex 𝑣1+3𝑖  dominates the vertices 𝑣3𝑖 , 𝑣3𝑖+2 and 𝑢1+3𝑖  

for 1 ≤ 𝑖 <  
𝑛

3
  (modulo addition i). For 𝑖 = 0, the vertex 𝑢1 dominates the vertices 𝑢2, 𝑢𝑛  and 

𝑣1; and the vertex 𝑣1 dominates the vertices 𝑣2, 𝑣𝑛  and 𝑢1. As iranges from 0 to  
𝑛

3
  , the minimal 

total dominating set thus obtained is as follows 

𝑇𝐷 =  
𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

  

Example 2.2 Consider the generalized Petersen graph 𝑃(6,1). Let  𝑢1 , 𝑢2 , … 𝑢6 be the outer 

vertices and 𝑣1 , 𝑣2 , … 𝑣6 be the corresponding inner vertices. 

 

By applying theorem 2.1,  the minimal total dominating set of𝑃(6,1) is  𝑢1 , 𝑢4 , 𝑣1 , 𝑣4 . 

Remark 2.3 Consider the generalized Petersen graph 𝑃(7,1)when 𝑛 = 7. Let  𝑢1 , 𝑢2 , … 𝑢7 be the 

outer vertices and 𝑣1 , 𝑣2 , … 𝑣7  be the corresponding inner vertices. 
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The vertex 𝑢1 dominates the vertices 𝑢2, 𝑢7 and 𝑣1; the vertex 𝑢2 dominates the vertices 𝑢1, 𝑢3 

and 𝑣2; the vertex 𝑢7 dominates the vertices 𝑢1, 𝑢6 and 𝑣7; the vertex 𝑣4 dominates the vertices 

𝑣3, 𝑣5 and 𝑢4; and the vertex 𝑣5 dominates the vertices 𝑣4, 𝑣6 and 𝑢5. Thus a set of vertices 
 𝑢1, 𝑢2 , 𝑢7 , 𝑣4 , 𝑣5  dominates every vertex of 𝑃(7,1). Thus the minimal total dominating set is 
 𝑢1, 𝑢2 , 𝑢7 , 𝑣4 , 𝑣5 .  

3. TOTAL DOMINATING SET OF THE GENERALIZED PETERSEN GRAPHS 𝐏(𝐧, 𝟐) 

Theorem 3.1 The minimal total dominating set for the generalized Petersen graph 𝑃(𝑛, 2) is 

given by 

(i) For 𝑛 even, 𝑛 > 8there are two cases : 

(a) 𝑛 ≢ 2 𝑚𝑜𝑑6  

𝑇𝐷 =  
𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

  

(b) 𝑛 ≡ 2 𝑚𝑜𝑑6  

𝑇𝐷 =

 
 
 

 
 𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

𝑣𝑛−2

  

(ii) For 𝑛 odd, 𝑛 > 5there are two cases : 

(a) 𝑛 ≡ 0 𝑚𝑜𝑑3 and 𝑛 ≡ 1 𝑚𝑜𝑑3  

𝑇𝐷 =  
𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

  

(b) 𝑛 ≡ 2 𝑚𝑜𝑑3  

𝑇𝐷 =

 
 
 

 
 𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

𝑣𝑛−2
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Proof. (i) Let 𝑛 be even and 𝑛 > 8. There are two cases: 

Case (a):Let 𝑛 ≢ 2 𝑚𝑜𝑑6 . The vertex 𝑢1+3𝑖  dominates the vertices 𝑢3𝑖 , 𝑢3𝑖+2 and 𝑣1+3𝑖 for 

1 ≤ 𝑖 <  
𝑛

3
  (modulo addition i) ; and the vertex 𝑣1+3𝑖  dominates the vertices 𝑣3𝑖−1, 𝑣3𝑖+3 and 

𝑢1+3𝑖  for 1 ≤ 𝑖 <  
𝑛

3
  (modulo addition i). For 𝑖 = 0, the vertex 𝑢1 dominates the vertices 𝑢2, 𝑢𝑛  

and 𝑣1; and the vertex 𝑣1 dominates the vertices 𝑣3, 𝑣𝑛−1 and 𝑢1. We get the TD-set of 𝑃(𝑛, 2) 

for all values of i, 0 ≤ 𝑖 <  
𝑛

3
  as 

𝑇𝐷 =  
𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

  

Case (b):Let 𝑛 ≡ 2 𝑚𝑜𝑑6 .  The vertex 𝑢1+3𝑖  dominates the vertices 𝑢3𝑖 , 𝑢3𝑖+2 and 𝑣1+3𝑖 for 

1 ≤ 𝑖 <  
𝑛

3
   ; and the vertex 𝑣1+3𝑖  dominates the vertices 𝑣3𝑖−1, 𝑣3𝑖+3 and 𝑢1+3𝑖  for 1 ≤ 𝑖 <  

𝑛

3
  

(modulo addition i). For 𝑖 = 0, the vertex 𝑢1 dominates the vertices 𝑢2, 𝑢𝑛  and 𝑣1; and the vertex 

𝑣1 dominates the vertices 𝑣3, 𝑣𝑛−1 and 𝑢1; and also the vertex 𝑣𝑛−2 dominates the vertices 𝑣𝑛−4, 

𝑣𝑛  and 𝑢𝑛−2. We get the TD-set of 𝑃(𝑛, 2) for all values of i, 0 ≤ 𝑖 <  
𝑛

3
  as 

𝑇𝐷 =

 
 
 

 
 𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

𝑣𝑛−2

  

(ii) Let 𝑛 be odd and 𝑛 > 5. There are two cases : 

Case (a): Let 𝑛 ≡ 0 𝑚𝑜𝑑3 and 𝑛 ≡ 1 𝑚𝑜𝑑3 .  The vertex 𝑢1+3𝑖  dominates the vertices 𝑢3𝑖 , 

𝑢3𝑖+2 and 𝑣1+3𝑖  for 1 ≤ 𝑖 <  
𝑛

3
  (modulo addition i) ; and the vertex 𝑣1+3𝑖 dominates the vertices 

𝑣3𝑖−1, 𝑣3𝑖+3 and 𝑢1+3𝑖  for 1 ≤ 𝑖 <  
𝑛

3
  (modulo addition i). For 𝑖 = 0, the vertex 𝑢1 dominates 

the vertices 𝑢2, 𝑢𝑛  and 𝑣1; and the vertex 𝑣1 dominates the vertices 𝑣3, 𝑣𝑛−1 and 𝑢1. We get the 

TD-set of 𝑃(𝑛, 2) for all values of i, 0 ≤ 𝑖 <  
𝑛

3
  as 

𝑇𝐷 =  
𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

  

Case (b):Let 𝑛 ≡ 2 𝑚𝑜𝑑3 .  The vertex 𝑢1+3𝑖  dominates the vertices 𝑢3𝑖 , 𝑢3𝑖+2 and 𝑣1+3𝑖 for 

1 ≤ 𝑖 <  
𝑛

3
   ; and the vertex 𝑣1+3𝑖  dominates the vertices 𝑣3𝑖−1, 𝑣3𝑖+3 and 𝑢1+3𝑖  for 1 ≤ 𝑖 <  

𝑛

3
  

(modulo addition i). For 𝑖 = 0, the vertex 𝑢1 dominates the vertices 𝑢2, 𝑢𝑛  and 𝑣1; and the vertex 

𝑣1 dominates the vertices 𝑣3, 𝑣𝑛−1 and 𝑢1; and also the vertex 𝑣𝑛−2 dominates the vertices 𝑣𝑛−4, 

𝑣𝑛  and 𝑢𝑛−2. We get the TD-set of 𝑃(𝑛, 2) for all values of i, 0 ≤ 𝑖 <  
𝑛

3
  as 
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𝑇𝐷 =

 
 
 

 
 𝑢1+3𝑖 ,      0 ≤ 𝑖 <  

𝑛

3
 

𝑣1+3𝑖 ,      0 ≤ 𝑖 <  
𝑛

3
 

𝑣𝑛−2

  

Remark 3.2 The values 5,6 and 8 of𝑛 are not included in the above theorem. Here we have given 

separately the TD-set of 𝑃(5,2), 𝑃(6,2) and 𝑃(8,2). 

1. Consider the generalized Petersen graph 𝑃(5,2) given in fig-5. Let  𝑢1 , 𝑢2 , … 𝑢5 be the outer 

vertices and 𝑣1 , 𝑣2 , … 𝑣5  be the corresponding inner vertices. The vertex 𝑢1 dominates the 

vertices 𝑢2, 𝑢5 and 𝑣1; the vertex 𝑣1 dominates the vertices 𝑣3, 𝑣4 and 𝑢1; the vertex 𝑣3 

dominates the vertices 𝑣1, 𝑣5 and 𝑢3; and the vertex 𝑣4 dominates the vertices 𝑣1, 𝑣2 and 𝑢4. 

Thus the set of vertices  𝑢1, 𝑣1 , 𝑣3 , 𝑣4  dominates every vertex of 𝑃(5,2). Thus the minimal 

total dominating set is 𝑢1 , 𝑣1 , 𝑣3 , 𝑣4 . 

 

2. Consider the generalized Petersen graph 𝑃(6,2) given in fig-6. Let  𝑢1 , 𝑢2 , … 𝑢6 be the outer 

vertices and 𝑣1 , 𝑣2 , … 𝑣6  be the corresponding inner vertices. The vertex 𝑢1 dominates the 

vertices 𝑢2, 𝑢6 and 𝑣1; the vertex 𝑢4 dominates the vertices 𝑢3, 𝑢5 and 𝑣4; the vertex 𝑣1 

dominates the vertices 𝑣3, 𝑣5 and 𝑢1; and the vertex 𝑣4 dominates the vertices 𝑣2, 𝑣6 and 𝑢4. 

Thus the set of vertices  𝑢1, 𝑢4 , 𝑣1 , 𝑣4  dominates every vertex of 𝑃(6,2). Thus the minimal 

total dominating set is 𝑢1 , 𝑢4 , 𝑣1 , 𝑣4 . 

 

3. Consider the generalized Petersen graph 𝑃(8,2)given in fig-7. Let  𝑢1 , 𝑢2 , … 𝑢8 be the outer 

vertices and 𝑣1 , 𝑣2 , … 𝑣8  be the corresponding inner vertices. The vertex 𝑢1 dominates the 

vertices 𝑢2, 𝑢8 and 𝑣1; the vertex 𝑢4 dominates the vertices 𝑢3, 𝑢5 and 𝑣4; the vertex 𝑣1 

dominates the vertices 𝑣3, 𝑣7 and 𝑢1;the vertex 𝑣4 dominates the vertices 𝑣2, 𝑣6 and 𝑢4; the 

vertex 𝑣6 dominates the vertices 𝑣4, 𝑣8 and 𝑢6 and the vertex 𝑣7 dominates the vertices 𝑣1, 𝑣5 

and 𝑢7. Thus the set of vertices  𝑢1 , 𝑢4 , 𝑣1 , 𝑣4 , 𝑣6 , 𝑣7  dominates every vertex of 𝑃(8,2). Thus 

the minimal total dominating set is 𝑢1, 𝑢4 , 𝑣1 , 𝑣4 , 𝑣6 , 𝑣7 . 
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4. In the above theorem 3.1, we note that the TD-set of the cases a(i) and a(ii) are same and for 

the cases b(i) and b(ii) also the TD-sets are same. 

Example 3.3 Consider the generalized Petersen graph 𝑃(10,2) to illustrate the theorem 3.1. Let  

𝑢1 , 𝑢2 , … 𝑢10 be the outer vertices and 𝑣1 , 𝑣2 , … 𝑣10 be the corresponding inner vertices. Here 

𝑛 = 10 By applying theorem 3.1(case a(i)), the minimal total dominating set of 𝑃(10,2) is 
 𝑢1, 𝑢4 , 𝑢7 , 𝑢10 , 𝑣1 , 𝑣4 , 𝑣7 , 𝑣10 . 

 

4. CONCLUSION 

In this paper we have found the minimal total dominating set of the generalized Petersen graphs 

P(n, k) when n ≥ 2k + 1, k = 1,2. 
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