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Abstract:It has been the desire of every Scientist or Engineer to give precise mathematical formulations to
the model he envisages. The model could represent some physical, biological or sociological process.

Fitting curves to complex shapes has always been a challenging problem and continues to be so. While
global fits to such data cannot serve the purpose, one usually thinks of piecewise fitting strategies. Even
then, each curve segment may have a lot in detail and hence fitting an explicit equation to it may not
produce the desired shape. Other options include (a) a parametric representation to a curve segment and
(b) a multi-resolution representation using wavelets.

Given a discrete set of n points (x;,y;),i = 1 : none can guess what the curve that fits the points looks like.
In many applications, the data that are captured from physical or biological experiments do not have
simple structures in the sense that, if one were to fit a curve to this data, the curve would not appear as a
function in the classical sense. Further, in most such situations, the genesis of the data is unknown.

The modeller will have to address two questions: (a) ordering the points and (b) to give an analytic
expression to the approximating curve. The resulting fitted curve must not only conform to statistical
standards but also appear pleasing to the eye; it should essentially capture the shape of the data.

Parametric representation to a curve segment by a novel approach is being explored. The technique is
purely data-guided and performs a dual role: ordering of points in the data set and parameterization
leading to a fit of good quality.

This approach requires the use of two matrix operations namely minmaxion and minaddition. As these are
nascent, their definitions and some of their relevant properties are given below.

Definition-1: Minmaxion

Cis min-max product of A and B

CAA @ Bwherec;; = minx{maxﬁﬁhix, b,; )}
Definition-li: Minaddition

Cis min-ad product of A and B

CAA @ Bwherec; = minx{maxﬁéiaix + by )}
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Both minmaxion and minaddition are similar to the usual matrix multiplication, satisfy the associative law,
are non-commutative, satisfy the power law for square matrices and obey the transposition rule analogous
to conventional matrix multiplication.

Another property of minmaxion and minaddition is “satiety” which holds in the case of zero diagonal
matrices with non-negative entries. By satiety we mean, if 4 is a zero diagonal matrix of order n such that
A1 = A¥for some positive integer k<n, we say A* is the satiated matrix of A.

The concepts of approachability distance and connective distance between node pairs, crucial to this
procedure, is introduced through the satiety property of minmaxion and minaddition.

These new distances are instrumental in imputing an ordering among intermediate points connecting node
pairs. Further, we propose the ordering index itself as the parameter for curve fitting.

As a test case this procedure has been applied on a data set. Ordering of the points as well as parametric
fitting proved satisfactory, albeit for one class of curves possessing lineal shapes

Keywords and Phrases: Analytic expression, parameterization, ordering of points, MINMAXION,
MINADDITION, approachability distance, connective distance, ordering index.

1. INTRODUCTION

Recognition of objects has been one of the challenges in several areas of image analysis like
biomedical image analysis, biometrics, military target recognition and general computer vision.

There are many applications where image analysis can be reduced to the analysis of shapes. To
describe shape through object boundary is a preliminary but crucial step in the overall description
of the shape.

We have intuitive ideas about curves because of their striking visual nature. A curve, in general,
has no simple mathematical definition. Given a discrete set of n data points (x;, i), i=1:n, one can
guess what the curve that fits the points should looks like. We fit the data either by means of
interpolants or by approximating curves.

In many applications, the data that are captured from physical or biological experiments do not
have simple structures in the sense that, if one were to fit a curve to this data, the curve would not
appear as a function in the classical sense. Figure 1 shows two typical curves which are not
function-like. A global explicit fit to such complicated shapes is impossible. These curves do not
qualify to be called functions.

my G

Figure 1. Curves which are not functions

One usual approach is to describe the overall shape by a piecewise approximation technique.
Several strategies have been suggested which include segmenting the curves at points of high
curvature and then going for a piecewise fit of each segment. One then may have to express such
curve segments either implicitly, or through parameterization. The implicit form of representing
curves does not have this limitation. Conic sections are classic examples where the implicit form
has been successfully tried.

Fundamentally, one has to answer the question of ordering the points. This is particularly true of
situations where we have no idea of how the data were generated.

The parametric form is preferred to fit closed and multiple valued curves. Since a point on a
parametric curve is specified by a single value of a parameter, the parametric form is, in a sense,
axis independent.
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In the parametric form, each coordinate of a point on a curve is represented as a function of a
single parameter t. For a two dimensional curve with t as a parameter, the Cartesian coordinates of
a point on the curve are given byx = x (t),y =y (t); a <t < b.

There is no unique parametric representation of a curve. For example,

x:cose,OSHS%, y=sin9,0£9£%
And

1—1t2 2t
x—1+t2, <t<1, y_1+t2' 0<t<1,

are two different parameterizations of the unit circular are in the first quadrant.

The curve end points and the length are fixed by the parameter range. Often it is convenient to
normalize the parameter range for the curve segment of interest to0 <t < 1.

We introduce a new parameterization procedure. This procedure requires the use of two matrix
operations namely MINMAXION and MINADDITION [3, 4, 5, 6, and 8].Since these are nascent,
we shall first present their definitions and some of their relevant properties .Thereafter; we shall
show how these operations will be useful in the context of curve parameterization.

2. MINMAXION AND MINADDITION
Definition I: (MINMAXION).Cis the min-max product of A and B

C £ A®B wherec; = minx{max (aix,bxj)}.
Definition 11 :( MINADDITION).CIs the min-ad product of A and B

C 2 A®B where ¢; = min,{max (a; + by;)}.

Both MINMAXION and MINADDITION are similar to the usual matrix multiplication, satisfy
the associative law, are non-commutative, satisfy the power law for square matrices and obey the
transposition rule analogous to conventional matrix multiplication.

Another property of minmaxion and minaddition is “satiety” which holds in the case of zero
diagonal matrices with non-negative entries. By satiety we mean, if Ais a zero diagonal matrix of
order n such that AK** = Ak for some positive integerk < n, we sayA* is the satiated matrix of
A. In fact, one can define satiated minmaxion and satiated minadditioneven when the zero-
diagonal matrix D = [dij] is not symmetric. Further, it is not necessary that the d;; satisfy the
usual metric laws, even though in the present context they are Euclidean distances.

2.1. MOTIVATION FOR THE MINMAXION AND MINADDITION OPERATIONS

Consider a network with n points where the direct distance between each point pair (i,j) isd;; . As
mentioned earlier, the d;;'s need not be “metric”. They need not be even symmetric. They can be
any “scalars” allowing comparison (<,=,> between two d;; ’s) and addition. For instance, djj may
be the time taken from hilltop i to the base j or the cost of going from itoj. Now consider a path ij
through these points in r steps i.e. a = x; = x; = ---. = x,,1 = b.The approachability distance
for this path is defined as the largest of the distances between the consecutive point pairs along
the path. Among all the paths of the same number of steps r, there will be at least one path for
which the approachability distance is minimum. This is defined as the connective distance for the
step lengthr.

can be easily seen that the minmax power sequence is term-wise monotonic. The connective
distance of step length r is given by a")ij and the elements of the satiated minmaxion matrix give
the (overall) connective lengths between the node pairs. Similarly, in case of minaddition, the
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satiated matrix gives the length of the total distance along the shortest paths between the ordered
node pairs. One may refer to, Reddy [8].

2.2. ORDERING THE POINTS AND PARAMETERIZATION BY MINMAXION AND
MINADDITION

Consider a test curve on which we take a discrete set of points. Once we have the co-ordinates of
the point-pairs, we can compute inter-node distances d; (say, Euclidean distances) and store these
distances in the distance matrix D.

0, i=j
p=lasl={4 i)
Let S = D*be the minmax satiated matrix of D, i.e. D* = D" = D"*! for some r <n. The
element d;; of D*gives the (rt"order) connective distance from i to j. Each of these paths will
have a link of largest length. Then d;; is the smallest among these largest links in the different
paths. Let p;; be the number of steps from i to j along this optimal path. The number and the
actual path itself can be obtained by the use of minaddition.

One can now define the Direct Link Matrix P from the matrix S as follows.
0 i=j,
P=[p;]l=1 1 dj=s;j,i#]j
oo otherwise

The minad satiated matrix of P, denoted by P*called the step length matrix, gives the number of
steps between point-pairs along these paths. Choosing a point-pair with largest step length, say
atof, one gets the path froma tof on which a relatively large number of points lie in an ordered
fashion; the number of steps between any point-pair along this path will be less than this number
and one can take this path as an arterial path along which many points lie in a well-defined
sequence. If it so happens that, P,z = (n — 1)orP,; ~(n — 1) one may infer that nodes atof are
the end points of a long connective path. Since the sequence of points between atof is now
available, one can accept this sequence of points along this path as the appropriate ordering
among the n points.

Ordering of points along a curve, in general a difficult problem by itself has now been addressed,
particularly in the case of open curves, what remains to be tackled is curve parameterization.

We propose the ordering index of the connective path itself as the parameter t. The coordinates
x (t) andy (t) can now be fitted as functions of’t’. Of course, t’ is in the ordinal scale; but as a
first approximation, can be used as values in an interval scale.

The present study investigates curves which are not closed and are in a sense, convex.

Illustration. This is generated as 31 points on the curve y = sign (g) .sinif2. x)in the range 0.1

: 0.2 : 0.61 and subjecting the curve to rotation through 36°, getting the new as [u(i), v(j)],i = 0 :
30. These values are presented as Table I(a) and (b) and are graphically represented in Figure
I1(a) and (b), respectively.

Consider the data set given in Table I(a). This set is plotted as a scatter plot in Figure Il(a). This
set is actually obtained by evaluating y as the function y = sign (g) .sinif2.x) in the range

0.1:0.2: 0.61. Figure 1l (b) (and the corresponding Table I (b) are the plotted values of (u, v) got
by a rotation of the data (x,y) by 36°. It is seen that x is not a function of y: neither u is a function
of v.

Matrix | (a) gives D, the (squared) Euclidean distance matrix between the points in Table I(a).
Matrix | (b) gives S = D*,Minmax satiated matrix for D.
Matrix I(c) is the Minad satiated matrix P*for P. P* is the direct link matrix

From Matrix I(c), it can be observed that the largest path length is 30 from i = 1toj = 9.The
optimal (Minmax) path from 1 to 9 is
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[1-11-3-54-29-23-12-530-2-15-14-27-28—-7-17-16-20-24-26—-10-22-21-6
- 5-18-31-13-19-8- 25-9]

This path covers all the points 0, 1, . . ., 30 and hence is the arterial path. The sequence given by
this path is x (), y (t), t = 0 to 30, the same as the coordinates of the points in the sequence above.
The ordering indices shown above can now be used to determine new parameters t; and t, as
described below.

3
(u,v):Setofcorresponding 31 pointsafter the dataisrotatedby3ss

Table 1. (x,y):Set of 31 points on the curvey = sign (f) .sinif2. x)in the range [0.1, 6.1]

X y u v
0.1000 0.1987 0.5746 0.2805
0.3000 0.5646 3.7454 -3.8618
0.5000 0.8415 4.7244 -3.8753
0.7000 0.9854 3.8699 -1.6489
0.9000 0.9738 3.9104 -1.9333
1.1000 0.8085 1.1775 -1.6118
1.3000 0.5155 3.8828 -2.3116
1.5000 0.1411 3.8169 -2.7425
1.7000 -0.2555 0.1977 0.1019
1.9000 -0.6119 3.5216 -1.4477
2.1000 -0.8716 2.0731 -2.0804
2.3000 -0.9937 1.7301 -2.2122
2.5000 -0.9589 1.1455 0.3858
2.7000 -0.7728 3.2177 -1.5257
2.9000 -0.4646 1.2251 -1.2060
3.1000 -0.0831 1.1866 -1.9395
3.3000 0.3115 1.3547 -0.3471
3.5000 0.6570 1.2965 -0.7675
3.7000 0.8987 1.3005 0.2589
3.9000 0.9985 2.4591 -1.8894
4.1000 0.9407 3.7146 -3.5639
4.3000 0.7344 3.7488 -3.1766
4.5000 0.4121 0.8991 0.3869
4.7000 0.0248 2.8529 -1.6876
4.9000 -0.3665 1.3651 0.0075
5.1000 -0.6999 4.0710 -4.0941
5.3000 -0.9228 4.3656 -4.0290
5.5000 -1.0000 1.2767 -2.1558
5.7000 -0.9193 1.4589 -2.2452
5.9000 -0.6935 3.8618 -4.0418
6.1000 -0.3582 3.7421 -1.4845
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Figure 2.

The curve fitting of u and v as functions of t is in two stages. Initially, t is the ordinal index and
we take the coordinates of the beginning an end points in the ordered curve as (u,,u,) and
(vp,v,) respectively. We then convert this index t which has the range 0 : 30 tot; = u;, +
(0:30) x (u, —up)/3andt, = v, + (0:30) X (v, —v,)/30. Using these t; and t, as
independent variables and getting the co-ordinates of u(t;) and v(t,) as the curves to be fitted to,
we go for successive polynomial fits. A scatter plot of the vectors x and y gives the theoretical
fitted approximating curves.

The fitted polynomials u(t;) , v(t,) are given as parametric equations below. These are plotted,
along with the residuals in Figurelll (a) and (b).

Intherange 0.1977 < t; < 4.7244
( 0.1731¢; + 0.9490
0.1546t7 + 0.9705 t; — 0.0044
u(ty) = { 0.7766t; — 0.3826tf + 0.6663¢t; + 0.0908
L 0.6396t{ + 0.0759t7 + 0.2700t? + 0.0323t; — 0.0125
—1.5276t7 + 10.0261t} — 12.6001¢t + 6.7478t7 — 1.5278t; + 0.1231
Similarly, in the range -3.8753 < t, < 0.1019
0.2162t, + 1.0799
0.1994tZ + 1.0506 t, — 0.0078
v(t,) = {0.5584¢t3 + 2.5530t5 + 1.0355¢, + 0.1843
0.5192t5 + 2.1697t3 + 0.5225t2 — 0.0337t, — 0.0289
0.3549t3 — 3.5900t5 — 12.6836t5 — 10.0490t7 — 3.0827t, — 0.3237
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Matrix I (c)

P* The satiated Minaddition matrix for P

International Journal of Scientific and Innovative Mathematical Research (1JSIMR) Page | 229



Chillara Somashekar et al.

x(n}Approxuman
3t \ i

(b)

Figure 3. (a) and (b): Polynomial approximations to u(t;) and v(t,) up to the fifth order (Errors shown in
red)
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Progress of the approximation scheme from top left (Original Test Curve (Shown in bubbles)
followed by its linear, quadratic, cubic, quartic and quintic approximations- from top left

3. ScoPE AND FUTURE STUDY

In the case when curves do not appear function-like, we could make an orthogonal transformation
on the ( x ,y ) co-ordinates to choose new co-ordinates for the points such that along one co-
ordinate axis, there is maximum spread and along the other, a minimum spread. This is easily
achieved by a suitable principal component analysis [PCA].Using the first PC score (§ ) as the
‘independent’ variable, one can fit the second PC score ‘n’ as a function of ‘&’, hopefully which
can be a function. This latter approach can be very rewarding. This, of course can fail if the curve
is a closed curve or a non-convex curve.

As already noted, in dealing with complex curves, for instance, self-intersecting curves, non-
convex curves or curves having cusps, the ordering of the points would be requiring more local
information , particularly as one approaches across over point or a cusp. If one were to summarize
curves as complex as in figurel, a global fit would be impossible; a piecewise approximation
using parametric curves appears the only way out. Fitting parametric curves for each segment
separately and then joining up the segments at the knots by adjusting derivatives of appropriate
orders can be thought of, as is done in the case of splines.

It is also to be noted that this approach is applicable even to points in three or higher dimensional
space where a meaningful distance metric can be defined so that Minmaxion becomes applicable.
A tangentially relevant reference is [7] where the matrix operations are used to recognize patterns
in a set of points.
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