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Abstract:It has been the desire of every Scientist or Engineer to give precise mathematical formulations to 

the model he envisages. The model could represent some physical, biological or sociological process.  

Fitting curves to complex shapes has always been a challenging problem and continues to be so. While 

global fits to such data cannot serve the purpose, one usually thinks of piecewise fitting strategies. Even 

then, each curve segment may have a lot in detail and hence fitting an explicit equation to it may not 

produce the desired shape. Other options include (a) a parametric representation to a curve segment and 

(b) a multi-resolution representation using wavelets. 

Given a discrete set of n points  𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1 ∶ 𝑛one can guess what the curve that fits the points looks like. 

In many applications, the data that are captured from physical or biological experiments do not have 

simple structures in the sense that, if one were to fit a curve to this data, the curve would not appear as a 

function  in the classical sense. Further, in most such situations, the genesis of the data is unknown. 

The modeller will have to address two questions: (a) ordering the points and (b) to give an analytic 

expression to the approximating curve. The resulting fitted curve must not only conform to statistical 

standards but also appear pleasing to the eye; it should essentially capture the shape of the data.  

Parametric representation to a curve segment by a novel approach is being explored. The technique is 

purely data-guided and performs a dual role: ordering of points in the data set and parameterization 

leading to a fit of good quality. 

This approach requires the use of two matrix operations namely minmaxion and minaddition. As these are 

nascent, their definitions and some of their relevant properties are given below. 

Definition-I: Minmaxion 

𝐶is min-max product of 𝐴 and 𝐵 

𝐶∆𝐴⊗ 𝐵where𝑐𝑖𝑗 = 𝑚𝑖𝑛𝑥 𝑚𝑎𝑥⁡(𝑎𝑖𝑥 , 𝑏𝑥𝑗 )  

Definition-Ii: Minaddition 

𝐶is min-ad product of 𝐴 and 𝐵 

𝐶∆𝐴⊕ 𝐵where𝑐𝑖𝑗 = 𝑚𝑖𝑛𝑥 𝑚𝑎𝑥⁡(𝑎𝑖𝑥 +  𝑏𝑥𝑗 )  
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Both minmaxion and minaddition are similar to the usual matrix multiplication, satisfy the associative law, 

are non-commutative, satisfy the power law for square matrices and obey the transposition rule analogous 

to conventional matrix multiplication.  

Another property of minmaxion and minaddition is “satiety” which holds in the case of zero diagonal 

matrices with non-negative entries. By satiety we mean, if 𝐴 is a zero diagonal matrix of order n such that 

𝐴𝑘+1 =  𝐴𝑘 for some positive integer k<n, we say 𝐴𝑘  is the satiated matrix of 𝐴. 

The concepts of approachability distance and connective distance between node pairs, crucial to this 

procedure, is introduced through the satiety property of minmaxion and minaddition. 

These new distances are instrumental in imputing an ordering among intermediate points connecting node 

pairs. Further, we propose the ordering index itself as the parameter for curve fitting. 

As a test case this procedure has been applied on a data set. Ordering of the points as well as parametric 

fitting proved satisfactory, albeit for one class of curves possessing lineal shapes 

Keywords and Phrases: Analytic expression, parameterization, ordering of points, MINMAXION, 

MINADDITION, approachability distance, connective distance, ordering index.

 

1. INTRODUCTION 

Recognition of objects has been one of the challenges in several areas of image analysis like 

biomedical image analysis, biometrics, military target recognition and general computer vision. 

There are many applications where image analysis can be reduced to the analysis of shapes. To 

describe shape through object boundary is a preliminary but crucial step in the overall description 

of the shape.  

We have intuitive ideas about curves because of their striking visual nature. A curve, in general, 

has no simple mathematical definition. Given a discrete set of n data points (xi, yi), i=1:n, one can 

guess what the curve that fits the points should looks like. We fit the data either by means of 

interpolants or by approximating curves.  

In many applications, the data that are captured from physical or biological experiments do not 

have simple structures in the sense that, if one were to fit a curve to this data, the curve would not 

appear as a function in the classical sense. Figure 1 shows two typical curves which are not 

function-like. A global explicit fit to such complicated shapes is impossible. These curves do not 

qualify to be called functions. 

 

Figure 1. Curves which are not functions 

One usual approach is to describe the overall shape by a piecewise approximation technique. 

Several strategies have been suggested which include segmenting the curves at points of high 

curvature and then going for a piecewise fit of each segment. One then may have to express such 

curve segments either implicitly, or through parameterization. The implicit form of representing 

curves does not have this limitation. Conic sections are classic examples where the implicit form 

has been successfully tried. 

Fundamentally, one has to answer the question of ordering the points. This is particularly true of 

situations where we have no idea of how the data were generated. 

The parametric form is preferred to fit closed and multiple valued curves. Since a point on a 

parametric curve is specified by a single value of a parameter, the parametric form is, in a sense, 

axis independent.  
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In the parametric form, each coordinate of a point on a curve is represented as a function of a 

single parameter t. For a two dimensional curve with t as a parameter, the Cartesian coordinates of 

a point on the curve are given by𝑥 = 𝑥 (𝑡), 𝑦 = 𝑦 (𝑡);  𝑎 ≤ 𝑡 ≤ 𝑏.  

There is no unique parametric representation of a curve. For example, 

𝑥 = 𝑐𝑜𝑠𝜃 , 0 ≤ 𝜃 ≤
𝜋

2
 ,                  𝑦 = 𝑠𝑖𝑛𝜃 , 0 ≤ 𝜃 ≤

𝜋

2
 

And 

𝑥 =
1 − 𝑡2

1 + 𝑡2
 ,   0 ≤ 𝑡 ≤ 1,            𝑦 =

2𝑡

1 + 𝑡2
  , 0 ≤ 𝑡 ≤ 1, 

are two different parameterizations of the unit circular are in the first quadrant. 

The curve end points and the length are fixed by the parameter range. Often it is convenient to 

normalize the parameter range for the curve segment of interest to0 ≤ 𝑡 ≤  1.  

We introduce a new parameterization procedure. This procedure requires the use of two matrix 

operations namely MINMAXION and MINADDITION [3, 4, 5, 6, and 8].Since these are nascent, 

we shall first present their definitions and some of their relevant properties .Thereafter; we shall 

show how these operations will be useful in the context of curve parameterization. 

2. MINMAXION AND MINADDITION 

Definition I: (MINMAXION).𝐶is the min-max product of 𝐴 and  𝐵 

 

𝐶 ≜ 𝐴⨂𝐵    𝑤ℎ𝑒𝑟𝑒 𝑐𝑖𝑗 = 𝑚𝑖𝑛𝑥 𝑚𝑎𝑥  𝑎𝑖𝑥 , 𝑏𝑥𝑗   . 

  

Definition II :( MINADDITION).𝐶Is the min-ad product of 𝐴 and  𝐵 

 

𝐶 ≜ 𝐴⨁𝐵    𝑤ℎ𝑒𝑟𝑒 𝑐𝑖𝑗 = 𝑚𝑖𝑛𝑥 𝑚𝑎𝑥  𝑎𝑖𝑥 +  𝑏𝑥𝑗   . 
 

Both MINMAXION and MINADDITION are similar to the usual matrix multiplication, satisfy 

the associative law, are non-commutative, satisfy the power law for square matrices and obey the 

transposition rule analogous to conventional matrix multiplication. 

Another property of minmaxion and minaddition is “satiety” which holds in the case of zero 

diagonal matrices with non-negative entries. By satiety we mean, if 𝐴is a zero diagonal matrix of 

order n such that 𝐴𝑘+1  = 𝐴𝑘  for some positive integer𝑘 < 𝑛, we say𝐴𝑘  is the satiated matrix of 

𝐴. In fact, one can define satiated minmaxion and satiated minadditioneven when the zero-

diagonal matrix 𝐷 = [𝑑𝑖𝑗] is not symmetric. Further, it is not necessary that the 𝑑𝑖𝑗  satisfy the 

usual metric laws, even though in the present context they are Euclidean distances. 

2.1. MOTIVATION FOR THE MINMAXION AND MINADDITION OPERATIONS 

Consider a network with n points where the direct distance between each point pair (i,j) is𝑑𝑖𝑗 . As 

mentioned earlier, the 𝑑𝑖𝑗 's need not be “metric”. They need not be even symmetric. They can be 

any “scalars” allowing comparison (<,=,> between two 𝑑𝑖𝑗 ‟s) and addition. For instance, dij may 

be the time taken from hilltop i to the base j or the cost of going from 𝑖𝑡𝑜𝑗. Now consider a path 𝑖𝑗 
through these points in r steps i.e. 𝑎 = 𝑥1 → 𝑥2 → ⋯ .→ 𝑥𝑟+1 = 𝑏.The approachability distance 

for this path is defined as the largest of the distances between the consecutive point pairs along 

the path. Among all the paths of the same number of steps r, there will be at least one path for 

which the approachability distance is minimum. This is defined as the connective distance for the 

step length r.  

The smallest among these(𝑟 = 1 ∶. . . . . . . : 𝑛 − 1) distances is defined as the connective distance. It 

can be easily seen that the minmax power sequence is term-wise monotonic. The connective 

distance of step length r is given by a
(r)

i j and the elements of the satiated minmaxion matrix give 

the (overall) connective lengths between the node pairs. Similarly, in case of minaddition, the 
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satiated matrix gives the length of the total distance along the shortest paths between the ordered 

node pairs. One may refer to, Reddy [8]. 

2.2. ORDERING THE POINTS AND PARAMETERIZATION BY MINMAXION AND 

MINADDITION 

Consider a test curve on which we take a discrete set of points. Once we have the co-ordinates of 

the point-pairs, we can compute inter-node distances dij (say, Euclidean distances) and store these 

distances in the distance matrix D. 

𝐷 =  𝑑𝑖𝑗  =  
    0  ,     𝑖 = 𝑗
> 0  ,    𝑖 ≠ 𝑗

  

Let 𝑆 = 𝐷∗be the minmax satiated matrix of D, i.e. 𝐷∗ = 𝐷𝑟 = 𝐷𝑟+1 for some 𝑟 < 𝑛. The 

element 𝑑𝑖𝑗
∗  of 𝐷∗gives the (𝑟𝑡ℎorder) connective distance from i to j.  Each of these paths will 

have a link of largest length. Then 𝑑𝑖𝑗
∗  is the smallest among these largest links in the different 

paths. Let 𝑝𝑖𝑗
∗  be the number of steps from i to j along this optimal path. The number and the 

actual path itself can be obtained by the use of minaddition. 

One can now define the Direct Link Matrix P from the matrix S as follows. 

𝑃 = [𝑝𝑖𝑗 ] =  

0     𝑖 = 𝑗,
    1   𝑑𝑖𝑗  =𝑠𝑖𝑗 ,

∞   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑖 ≠ 𝑗  

The minad satiated matrix of 𝑃, denoted by 𝑃∗called the step length matrix, gives the number of 

steps between point-pairs along these paths. Choosing a point-pair with largest step length, say 

𝛼to𝛽, one gets the path from𝛼 to𝛽  on which a relatively large number of points lie in an ordered 

fashion; the number of steps between any point-pair along this path will be less than this number 

and one can take this path as an arterial path along which many points lie in a well-defined 

sequence. If it so happens that, 𝑃𝛼𝛽
∗ =  𝑛 − 1 𝑜𝑟𝑃𝛼𝛽

∗ ~ 𝑛 − 1  one may infer that nodes 𝛼𝑡𝑜𝛽 are 

the end points of a long connective path. Since the sequence of points between 𝛼𝑡𝑜𝛽 is now 

available, one can accept this sequence of points along this path as the appropriate ordering 

among the n points. 

Ordering of points along a curve, in general a difficult problem by itself has now been addressed, 

particularly in the case of open curves, what remains to be tackled is curve parameterization. 

We propose the ordering index of the connective path itself as the parameter t. The coordinates 

𝑥 (𝑡) 𝑎𝑛𝑑𝑦 (𝑡) can now be fitted as functions of′𝑡′. Of course, ′𝑡′ is in the ordinal scale; but as a 

first approximation, can be used as values in an interval scale. 

The present study investigates curves which are not closed and are in a sense, convex. 

Illustration. This is generated as 31 points on the curve 𝑦 = 𝑠𝑖𝑔𝑛  
𝑥

3
  . 𝑠𝑖𝑛⁡(2. 𝑥)in the range 0.1 

: 0.2 : 0.61 and subjecting the curve to rotation through 36
o
, getting the new as  𝑢 𝑖 , 𝑣 𝑗  , 𝑖 = 0 ∶

30. These values are presented as Table I(a) and (b) and are graphically represented in Figure 

II(a) and (b), respectively. 

Consider the data set given in Table I(a). This set is plotted as a scatter plot in Figure II(a). This 

set is actually obtained by evaluating y as the function 𝑦 = 𝑠𝑖𝑔𝑛  
𝑥

3
  . 𝑠𝑖𝑛⁡(2. 𝑥) in the range 

0.1:0.2: 0.61. Figure II (b) (and the corresponding Table I (b) are the plotted values of (𝑢, 𝑣) got 

by a rotation of the data (𝑥, 𝑦) by 36
o
. It is seen that x is not a function of y: neither u is a function 

of v. 

Matrix I (a) gives D, the (squared) Euclidean distance matrix between the points in Table I(a). 

Matrix I (b) gives 𝑆 =  𝐷∗,Minmax satiated matrix for D. 

Matrix I(c) is the Minad satiated matrix 𝑃∗for 𝑃. 𝑃∗ is the direct link matrix 

From Matrix I(c), it can be observed that the largest path length is 30 from   𝑖 =  1 𝑡𝑜𝑗 =  9.The 

optimal (Minmax) path from 1 to 9 is 
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[1→11→3→4→29→23→12→30→2→15→14→27→28→7→17→16→20→24→26→10→22→21→6

→ 5→18→31→13→19→8→ 25→9] 

This path covers all the points 0, 1, . . ., 30 and hence is the arterial path. The sequence given by 

this path is x (t), y (t), t = 0 to 30, the same as the coordinates of the points in the sequence above. 

The ordering indices shown above can now be used to determine new parameters t1 and t2 as 

described below. 

Table 1. (x,y):Set of 31 points on the curve𝑦 = 𝑠𝑖𝑔𝑛  
𝑥

3
  . 𝑠𝑖𝑛⁡(2. 𝑥)in the range  [0.1, 6.1]                                                            

(u,v):Setofcorresponding 31 pointsafter the dataisrotatedby3ss 

 

 

 

 

 

 

 

 

   

   

 

 

 

 

 

x y 

0.1000 

0.3000 

0.5000 

0.7000 

0.9000 

1.1000 

1.3000 

1.5000 

1.7000 

1.9000 

2.1000 

2.3000 

2.5000 

2.7000 

2.9000 

3.1000 

3.3000 

3.5000 

3.7000 

3.9000 

4.1000 

4.3000 

4.5000 

4.7000 

4.9000 

5.1000 

5.3000 

5.5000 

5.7000 

5.9000 

     6.1000 

0.1987 

0.5646 

0.8415 

0.9854 

0.9738 

0.8085 

0.5155 

0.1411 

-0.2555 

-0.6119 

-0.8716 

-0.9937 

-0.9589 

-0.7728 

-0.4646 

-0.0831 

0.3115 

0.6570 

0.8987 

0.9985 

0.9407 

0.7344 

0.4121 

0.0248 

-0.3665 

-0.6999 

-0.9228 

-1.0000 

-0.9193 

-0.6935 

-0.3582 

u v 

0.5746 

3.7454 

4.7244 

3.8699 

3.9104 

1.1775 

3.8828 

3.8169 

0.1977 

3.5216 

2.0731 

1.7301 

1.1455 

3.2177 

1.2251 

1.1866 

1.3547 

1.2965 

1.3005 

2.4591 

3.7146 

3.7488 

0.8991 

2.8529 

1.3651 

4.0710 

4.3656 

1.2767 

1.4589 

3.8618 

      3.7421 

0.2805 

-3.8618 

-3.8753 

-1.6489 

-1.9333 

-1.6118 

-2.3116 

-2.7425     

 0.1019    

-1.4477    

-2.0804   

 -2.2122    

  0.3858    

-1.5257 

-1.2060    

-1.9395    

-0.3471   

 -0.7675    

  0.2589    

-1.8894   

-3.5639 

-3.1766     

  0.3869   

 -1.6876                

   0.0075   

 -4.0941   

 -4.0290   

 -2.1558 

 -2.2452   

 -4.0418   

 -1.4845 
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(a)                                                                  (b)

 
Figure 2.

 

The curve fitting of u and v as functions of t is in two stages. Initially, t is the ordinal index and 

we take the coordinates of the beginning an end points in the ordered curve as  𝑢𝑏 , 𝑢𝑒  and  

 𝑣𝑏 , 𝑣𝑒  respectively. We then convert this index t which has the range 0 ∶ 30 𝑡𝑜𝑡1 =  𝑢𝑏 +
 0 ∶ 30 × (𝑢𝑒 − 𝑢𝑏)/3and 𝑡2 =  𝑣𝑏 +  0 ∶ 30 × (𝑣𝑒 − 𝑣𝑏)/30. Using these 𝑡1 and 𝑡2 as 

independent variables and getting the co-ordinates of u 𝑡1  and v 𝑡2  as the curves to be fitted to, 

we go for successive polynomial fits. A scatter plot of the vectors x and y gives the theoretical 

fitted approximating curves. 

The fitted polynomials  𝑢 𝑡1  , v 𝑡2  are given as parametric equations below. These are plotted, 

along with the residuals in FigureIII (a) and (b). 

In the range   0.1977 ≤ 𝑡1 ≤ 4.7244 

𝑢 𝑡1 =  

 
 
 

 
 

0.1731 𝑡1 +  0.9490                                                                                                

0.1546𝑡1
2 + 0.9705 𝑡1 − 0.0044                                                                          

0.7766𝑡1
3 − 0.3826𝑡1

2 + 0.6663𝑡1 + 0.0908                                                    

0.6396𝑡1
4 + 0.0759𝑡1

3 + 0.2700𝑡1
2 + 0.0323𝑡1 − 0.0125                             

−1.5276𝑡1
5 + 10.0261𝑡1

4 − 12.6001𝑡1
3 + 6.7478𝑡1

2 − 1.5278𝑡1 + 0.1231

  

Similarly, in the range   -3.8753 ≤ 𝑡2 ≤  0.1019 

𝑣 𝑡2 =  

 
 
 

 
 

0.2162𝑡2 +  1.0799                                                                                              

0.1994𝑡2
2 + 1.0506 𝑡2 − 0.0078                                                                        

0.5584𝑡2
3 + 2.5530𝑡2

2 + 1.0355𝑡2 + 0.1843                                                   

0.5192𝑡2
4 + 2.1697𝑡2

3 + 0.5225𝑡2
2 − 0.0337𝑡2 − 0.0289                            

0.3549𝑡2
5 − 3.5900𝑡2

4 − 12.6836𝑡2
3 − 10.0490𝑡2

2 − 3.0827𝑡2 − 0.3237
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Matrix I (a) 

Matrix of (squared) distances between the 31 points in pairs 

 



Chillara Somashekar et al. 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)            Page | 228 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix I ( b) 

   S=D* ; The Satiated Minmax Matrix 
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Matrix I (c ) 

                  𝑃∗ The satiated Minaddition matrix for P 
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(a) 

 

(b) 

Figure 3. (a) and (b): Polynomial approximations to u(t1) and v(t2) up to the fifth order (Errors shown in 

red) 

 

Figure 4. 
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Progress of the approximation scheme from top left (Original Test Curve (Shown in bubbles) 

followed by its linear, quadratic, cubic, quartic and quintic approximations- from top left 

3. SCOPE AND FUTURE STUDY 

In the case when curves do not appear function-like, we could make an orthogonal transformation 

on the ( x ,y ) co-ordinates to choose new co-ordinates for the points such that along one co-

ordinate axis, there is maximum spread and along the other, a minimum spread. This is easily 

achieved by a suitable principal component analysis [PCA].Using the first PC score (ξ ) as the 

„independent‟ variable, one can fit the second PC score „η‟ as a function of „ξ‟, hopefully which 

can be a function. This latter approach can be very rewarding. This, of course can fail if the curve 

is a closed curve or a non-convex curve. 

As already noted, in dealing with complex curves, for instance, self-intersecting curves, non-

convex curves or curves having cusps, the ordering of the points would be requiring more local 

information , particularly as one approaches across over point or a cusp. If one were to summarize 

curves as complex as in figure1, a global fit would be impossible; a piecewise approximation 

using parametric curves appears the only way out. Fitting parametric curves for each segment 

separately and then joining up the segments at the knots by adjusting derivatives of appropriate 

orders can be thought of, as is done in the case of splines. 

It is also to be noted that this approach is applicable even to points in three or higher dimensional 

space where a meaningful distance metric can be defined so that Minmaxion becomes applicable. 

A tangentially relevant reference is [7] where the matrix operations are used to recognize patterns 

in a set of points. 
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