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Abstract: The Galois Theory has been largely developed and analyzed. In the present paper, certain 
theorems that we considered not enough examined, have been revisited and completed with some 
supplementary results not found in the known publications. The respective objectives refer to the basic 
elements of the theory. Certain results could be reached due to the usage of symbolic programming 
language, namely Maple 12. Also, in the paper, there has been shown that various known procedures for 
building a permutation group, in some cases, can lead to different results. 
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1. INTRODUCTION 

The Galois Theory has been largely developed [1]-[15] and important results have been obtained. 
In many works one considers as very interesting the transform of the polynomial equation 
belonging to Galois. According to [1, Lemma II and III], let be the polynomial equation: 
 

( ) 1
0 1 0 ,n n

nP x a x a x a−= + + ⋅ ⋅ ⋅ + =                  (I)

the coefficients of which belong to the rational number field Q and has the distinct roots 

[ ]1,ix i n∀ ∈ . Having the roots ,...,,, cba it is possible to form a function V  of the roots so that 

no value obtained by the permutations, in this function, of the roots, in all possible manners, be 
equal to each other. For instance there is taken: 
 

,...+++= cCbBaAV                (II)

where ...,,, CBA are integer numbers. The function V  chosen as above will have the property 
that all roots of the given equation will be rationally expressed in terms of V . Therefore: 
 

( ), , , , . . . ;V a b c dφ= ( ), , , , . . . 0V a b c dφ− = . (III)

Making the product of all binomials above, by permuting all letters, except the first, an equation 
in V  will be obtained, and it is called the transform of the given equation. Further, there is written 
that: 

( ), 0.F V a =  (IV)

Hence, any root of the given equation can be expressed in terms of one root of the transformed 
equation. 
This deduction has been used in various forms in the works concerning this subject. Concerning 
this development, we have the objection that in last formulae no indication is made to see the 
structure of the function of V  and if it contains some undetermined quantities. For this reason, we 
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gave a complete deduction to this problem, but for a small number of roots, in order to keep a 
form easy enough for to follow easily the deduction. Such analyses are not in the known 
literature. 

2. THE EXAMINED PROBLEM  
For ease expression, we shall call the roots of the given equation input roots and the roots of the 
transformed equations output roots. We established that between the output roots and the input 
ones certain relations exist. These relations contain the symbols of the input and output roots, the 
coefficients of the given equations and those of the transformed undetermined input roots. The 
results show that we can express all input roots in terms of a single output root as in the known 
works. Having available only the output roots and having in view that the relations mentioned 
above are not linear, we found that they are polynomials of a degree with a unit smaller than the 
degree of the given equation. Therefore, surely every output root allows for obtaining a solution 
for each input root, but the relation, may be of a certain degree, greater than unity, producing 
several solutions and it remains to keep only that is correct. For this reason, it is necessary to 
calculate for several output roots, and keep the value that is common to those roots. However, this 
situation can be avoided as further shown. 
We show that if the coefficients transforming the given equation are suitably chosen, the input 
quantity ix  will be one solution for any output quantity jy . Conversely, the relation does not 

hold. For this purpose, we selected the coefficients roots of unity. In the known papers concerning 
this subject these circumstances are not specified. 

2.1 The Relations between the Roots of a given Algebraic Equation and the Roots of its 
Galois Transformed Equation  

We shall present the procedure together with the principle of the program we prepared for this 
purpose in the symbolic language Maple 12. It is to be noted that semicolon is the end of a 
command in Maple, even if any text follows. We shall consider equation (1), for the case 3=n , 
in order the results be simple enough for to be easily followed. 
The equations which occur are from two sources, the first 3, those which achieve the 
transformation, according to Galois, and the next 3, the Viète relations between the roots and the 
coefficients of the given equation: 
 

( ) 1
0 1 0,n n

nf x a x a x a−= + + ⋅ ⋅ ⋅ + =  (1)

eqn1:= ;1332211 yxxx −α+α+α   

eqn2:= ;2133221 yxxx −α+α+α  (2 a, b, c)

eqn3:= ;3231231 yxxx −α+α+α   

eqn4:= ;1321 axxx +++   

eqn5:= ;2323121 axxxxxx −++  (3 a, b, c)

eqn6:= ;3321 axxx +   

Now, let us find the relations between 1x  and 1y . A very simple solution is the elimination using 
the next Maple command: 
 
 

=:11w eliminate { } { }( )32 ,,5,4,1 xxeqneqneqn ; (4)
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There follows the elimination, [10], result, below, represented by the second factor within braces: 
 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

α−α
α++α+α−

−=

α−α
α++α−α

=

;

;

32

2111211
3

32

3111113
2

ayxxx

ayxxx

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+α+α+α+

α+αα−α−α+

α+α+α+αα−

αα−α+αα−αα−

α+α+αα+α−

2
1

2
32112

2
1

2
3

2
1

2
213111121

2
1

2
1

2
221

2
311212

2
11

2
131131

2
132322

1131
2
2132

2
1111

2

2

yayxx

xxaxaax

axayax

xyaxa

yxxaayx

 (5)

We shall denote the elimination result after collecting the coefficients of like powers:  

=11w 11321 )2( yxα+α+α− + 2
1

2
3

2
2

2
1323121 )( xα+α+α+αα−αα−αα−

1311211
2
31

2
21 )( xaaaa αα−αα−α+α+ + 2

1y + 13121 )( yaa α+α

;)2( 0
1

2
32

2
2232

2
1322 xaaaa α+α+αα+αα−+ ( ) .2/32/3:1 Iy ⋅−=  

(6)

In order to avoid any possible superposition, we shall replace, in the last equation, 1x  by 1u . The 
result represents the equation 011 =w , having the variable 1u . 
As it can be seen from the last equation, the relation between 1u  and 1y is not linear, and for a 
given value of 1y , we do not obtain a single value of 1u , as assumed in the Galois Theory. For 
this reason, there is necessary to choose the other quantities which intervene so that this situation 
be avoided. As shown, there intervene only the coefficients of the given equation and the 
coefficients involved in the transformation of the equation. Only the latter ones could be 
modified. Their values cannot be guessed, but we can put the condition that the coefficients of the 
variable 1u  at a power greater than the unity be zero. For the case we verified, we found as 

suitable the complex roots of the unity: ,,, 32 ααα the last being equal to unity. However, we 
have kept the literal form, and replaced the numerical value at the end, in order to avoid any 
division by zero. 
For our calculations, we took the input quantities: coefficients of the given equation: 
 

;6:;11:;6: 321 −==−= aaa  (7)

the values of the roots, given below to allow a verification, generally are not known, 
 

;3:;2:;1: 321 === xxx  (8)

and the coefficients for transforming the equation, the imaginary unit being, as in Maple, letter I : 
 

;3
3
Pi2exp:;2

3
Pi2exp:;

3
Pi2exp: 321 ⎟

⎠
⎞

⎜
⎝
⎛=α⎟

⎠
⎞

⎜
⎝
⎛=α⎟

⎠
⎞

⎜
⎝
⎛=α III  (9)

in order to verify easily the results. After replacing the input values, except the value of x  
supposed not known, we obtained the following equation: 
 

 (10)

 

There follows 111 == ux , therefore the correct result is obtained. 
Let us now, find the relations between 2x  and 1y . A very simple solution is the elimination using 
as above, the next Maple command: 
 

.01961524.5
104).0108()1961524.5108799103.2( 92

1
10

1
9

11

=+
⋅−+⋅−+−⋅= −−−

I
uIuIw
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=:11w eliminate { } { }( )1 31, 4, 5 , ,eqn eqn eqn x x ; (11)

It follows the elimination result, below, represented by the second factor within braces: 
 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

α+α−
α++α−α

−=

α+α−
α++α−α

=

;

;

13

1112221
3

13

3112232
1

ayxxx

ayxxx

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

α++α+αα−

αα−α+α+α+

αα−α+αα−α+

α+αα−α+αα−

α+α+αα+α−

2
2

2
2

2
1

2
2

2
32321

2211
2
12

2
32131

2
213123132121

2
2
11

2
232111

2
212

1212
2
3131

2
1122

2

2

xyxxa

xaaaya

xyxayx

xaxyax

yxxaayx

 
(12) 

 

We shall denote the elimination result after collecting the coefficients of like powers:  

1231221 )2( yxw α+α+α−= 2
2

2
3

2
2

2
1323121 )( xα+α+α+αα−αα−αα−+

2321211
2
11

2
31 )( xaaaa αα−αα−α+α+ + 2

1y + 13111 )( yaa α+α

;)2( 0
2

2
32

2
1231

2
1312 xaaaa α+α+αα+αα−+ ( ) .2/32/3:1 Iy ⋅−=  

(13)

 

After replacing the input values, except the value of x  supposed not known, and replacing, like 
previously, 2x  by 2u  we obtained the following equation: 
 

,019615243.5
0000004.9).010.8()598076212.250000005.4( 2

2
10

221

=−
−+−++= −

I
uIuIw  (14)

and there follows 222 == ux , therefore the correct result is obtained. 
Let us now, find the relations between 3x  and 1y . A very simple solution is the elimination using 
as above, the next Maple command: 
 

=:31w eliminate { } { }( )1 21, 4, 5 , ,eqn eqn eqn x x ; (15)

There follows the elimination result, below, represented by the second factor within braces: 
 

⎪
⎪
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⎧
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=
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2

2

xyxxxa
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xaxyax

yxxaayx

 (16)

As previously, we shall denote the elimination result after collecting the coefficients of  
like powers: 

1321331 )2( yxw α+α+α−= 2
3

2
3

2
2

2
1323121 )( xα+α+α+αα−αα−αα−+

+α+αα−αα−α+ 3
2
11311321

2
21 )( xaaaa +2

1y 12111 )( yaa α+α

;)2( 0
3

2
22

2
1221

2
1212 xaaaa α+α+αα+αα−+ ( ) .2/32/3:1 Iy ⋅−=  

(17)
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After replacing the input values, except the value of x  supposed not known, and replacing, like 
above, 3x  by 3u , we obtained the following equation: 
 

,0794228636.75000001.13
).0108()598076210.2499999996.4( 2

3
10

331

=−+
+⋅−++−= −

I
uIuIw  (18)

and there follows 333 == ux , therefore the correct result is obtained. 
By comparing for a fixed iy , the values of the corresponding values of jx  there follows that for 

passing from any jx  to the next 1+jx  it is necessary and sufficient to make a step of a circular 

permutation of the index of the coefficients jα  of the transform equation. 

Let us now, find the relations between 3x  and 2y . A very simple solution is, like previously, the 
elimination using as above, the next Maple command: 
 

=:32w eliminate { } { }( )1 22, 4, 5 , ,eqn eqn eqn x x ; (19)

There follows the elimination result, below, represented by the second factor within braces: 
 

⎪
⎪
⎭
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⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧
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=

;

;
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⎪
⎪
⎪
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⎩
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⎪
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⎨
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α−α+αα−αα−

α+α+α+αα−

2
2

2
3

2
1

2
3

2
3

2
3

2
2
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2
32

2
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31
2
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2
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2
332

2
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2
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2
31

2

2

yxxx

xaaaxa

ayaxaa

yxyxxx

yxyaxax

 (20)

We shall denote the elimination result after collecting the coefficients of like powers: 

2331232 )2( yxw α+α+α−= 2
3

2
3

2
2

2
1322131 )( xα+α+α+αα−αα−αα−+

+α+αα−αα−α+ 3
2
11321211

2
31 )( xaaaa +2

2y 23111 )( yaa α+α

;2 2
32

2
1231

2
1312 α+α+αα+αα− aaaa  

(21)

 

and it is not necessary to carry out the calculations as before, because by replacing the quantities, 
33 =x  and Iy ⋅−−= )2/3(2/32  or similarly 33 =x  for Iy ⋅= 33 , we can see that the last 

equation is fulfilled. However, we gave the literal results because, in the known literature, we find 
no reference to the structure of the involved quantities. 

3. SOLVABILITY OF POLYNOMIAL EQUATIONS 
In order to examine the conditions of solvability, we need to recall the following basic concepts: 

a. Adjoining a quantity, term introduced by Galois. When one selects as known some quantities, 
in fact not then available, one says that they have been adjoined to the equation which should be 
solved. 
b. Rational quantity means any quantity expressed in a rational form in terms of the coefficients 
of the equation and some adjoined quantities (even if the latter ones are not rational).  
c. Invariant subgroup of a group (detailed in Subsection 3.2). 

Any group H, considered as a subgroup of a group G, is an invariant subgroup of the latter, if any 
permutation of G, on the transform of H yields also H. We recall that the transform of any group 

H (here a subgroup) is 1)transf( −σσ= HH  where σ  is the preceding mentioned permutation. 
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The inversion of two roots (letters, numbers) is called a transposition. The group which includes 
at least one invariant subgroup, except itself (permutation 1), and also surely the identical group, 
is called to be a composed group, otherwise a simple group. 
The order of a subgroup (number of permutations) divides the order (number of permutations) of 
the group to which it belongs. This proposition is proved in several works in the known literature 
in similar ways. We consider not necessary to remind what is well established, but a suggestive 
explanation may be useful because of its many applications. An equation of degree 4 can have at 
most 24 permutations, corresponding to 24 equations of the first degree. This permutation set may 
be decomposed, in principle, into several subgroups corresponding to the following number of 
permutations: 24; 12; 4; 2; 1, and: 24; 12; 3; 2; 1 equations. It is obvious that each of them divides 
the total number of permutations. The product of two of them can give the order of one preceding 
them, as it results by composing the equations. For instance, for the quintic, we can select say the 
subgroups of orders 5; 3; 2; 1, but they do not divide each other, hence not valid.  

4. GROUP OF AN ALGEBRAIC EQUATION 
4.1. General Denominations 

In order to examine the conditions of solvability, we shall use the concepts described above: 
Adjoining a quantity, to the equation which should be solved; rational quantity; invariant 
subgroup of a group. Here, the maximum invariant subgroup will be considered. 

4.2. Permutations and the Group of an Algebraic Equation 

Consider a polynomial equation of degree n  and a rational function of its roots, the value of 
which differs for any different permutation of the roots. We recall, for there are various 
denominations concerning the permutations. We have to use generally n  objects. For representing 
the replacement of certain of them by others, a permutation is used. For this purpose, one can use 
two lines (rows). The given objects (numbers, letters) are written on the upper line and the 
replacement objects (numbers, letters) on the lower line. This replacement gives the result called 
permutation. There are also several other notation manners among which the cycle notation, [19]. 
The first line (row) presents the roots (by numbers or letters) of any polynomial. If the second line 
(row) represents the same values, the both represent together the identical group. We shall assume 
that the coefficients of the equation belong to the rational number field, Q. The algebraic group of 
an equation, according to Galois, who introduced this denomination, contains only those roots and 
permutations which preserve the relation between the roots, namely the roots which play the same 
role with respect to the rational numbers. For instance, two complex conjugate roots may be 
replaced with each other, but a rational number and a complex (or a radical) one may not be. 

A basic remark, due to Galois, is the following: A group of permutations of an equation of a 
prime degree p  may not be reduced to a group of p  permutations except the case in which each 
permutation can be deduced from another one by a circular permutation [1, Proposition VII]. If 
this condition is not fulfilled, the permutations preserve the roots and the coefficients of the 
equations, but spoils its structure, so that in the penultimate permutation, a complex conjugate 
root does no longer appear as produced by an equation of the second degree, but from two 
whatever binomial products, one containing a rational quantity and the other a complex one.  

According to Galois, the greatest group of an equation with m  roots is the set of the mN = ! 
permutations which can be achieved with the m  roots, group usually denoted by the letter G, [1, 
Proposition I]. In practical cases, due to limitations mentioned above, the number can be much 
smaller. Therefore, one should not confuse the permutation group of a polynomial equation with 
the general group of permutations in Algebra. 

It is useful to note that in the all known recent books, for the calculation of a permutation group, 
one starts from an irreducible polynomial, but in his works, Galois used as well also reducible 
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polynomials [6, p. 238-239]. We consider that the latter procedure can be useful for the proof of 
certain reducing procedures. 

A subsequent definition is based on the concept of automorphism [10]. Let the number field E 
that contains all roots of the polynomial equation, be an extension of the field QF ⊂  which 
contains the coefficients of the equation, then the expression FE /  represents the group of 
automorphisms. The automorphism is a mathematical object the elements of which have bijective 
applications over a number field belonging, in the case of the Galois Theory, to Q. These 
elements can be interchanged in permutations without spoiling the results, for instance two 
complex conjugate roots or the two results of a square root, because they result from a polynomial 
of second degree. According to certain works, [17, p. 95], we may include also the integer and 
rational roots, each being an application at the same point. Any automorphism of FE /  fixes 
pointwise F, set of all automorphisms. 
This group is sometimes denoted by ( )FE /Aut . It is useful to note that roots of higher degree 
behave to some extent in a different way. For example, the case of the equations of third degree: 
3 roots, one real and other 2 complex conjugate, also called automorphisms, although not 
emphasized in usual books (detailed for any degree in Section 5). The basic role of permutations, 
in this theory, is to keep the structure of the group, and the existence of invariant subgroups. 
Several authors developed the last definition, renouncing the previous ones. Our impression is 
that both types are useful, the former in order to analyze the solvability, the latter for easily 
establishing the expression of the Galois group. This Galois group of (the extension) E over F is 
usually denoted by ( )FE /Gal . 
The discriminant of an equation (polynomial) is a rational and symmetric function of the roots, 
and implicitly of the coefficients of the equation. For these reasons, it may be used as the 
permutation group of the equation. If it is positive, all roots are real and may also contain complex 
conjugate roots, and if it is a perfect square it belongs to the alternating group nA  [14]. 

5. FORM OF THE GROUP OF PERMUTATIONS OF A POLYNOMIAL (EQUATION),  
ALSO CALLED GALOIS GROUP  

There are several manners for presenting the permutation group of a polynomial equation. 
We shall remark that not all manners give just the same result; we saw a certain difference in 
various cases. We shall consider the results applying the procedures of Galois and those by using 
the concept of automorphism in the form given by Maple 12. We shall examine the following 
polynomial equations and give the obtained results in tables 1 and 2. 
The calculation of the roots and permutation group has been carried out by using the Maple 
commands: 

 ));((: fevalfsolver =  f - the name of the 
polynomial function 

 );( fgalois   

We introduced the first formula in order to avoid the form containing radicals, although the 
involved numbers are irrational, which lead to very long formulae, whereas we have been 
interested in the nature of the results, namely if there are real or complex. The roots been known, 
we could express the permutation group according to recommendations of Galois [1], [6, pp. 238-
239]. 

By inspecting the tables 1 and 2, we can see that from polynomials a-d, only the first polynomial 
has complex conjugate roots, whereas the other three have only real roots. For the cases a, c, d, 
from Maple 12 there follows the same permutation group, whereas from the deduction we made 
according to the Galois procedure, only case a, with complex roots has a group different from the 
other cases with real roots. This result is in good accordance with Galois explanations in his texts. 
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Table 1. Examples a and b of permutation group of a polynomial (equation, function). 

Function 1
2
3: 23 +−= xxf                 (a) 13: 23 +−= xxf                              (b) 

Group after 
Maple 12 

 

 

 

 

Group 
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⎟
⎟
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⎜
⎜
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id =σ1
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

→
→
→

33
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21

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

→
→
→

=σ
33
22

11

id =σ1
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

→
→
→

13
32
21

 

Roots 

6776506.0
5386519.008882534.1
5386519.008882534.1

−
−
+

I
I

 
5320888.08793852.26527036.0 −

 

Table 2. Examples c and d of permutation group of a polynomial (equation, function). 
 

Function 14: 23 +−= xxf                   (c) 17: 23 +−= xxf                              (d) 

Group after 
Maple 12 
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⎟
⎟
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⎠
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⎜
⎜
⎜

⎝

⎛

→
→
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⎟
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⎠

⎞

⎜
⎜
⎜

⎝

⎛

→
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Roots 4728339.09354323.35374015.0 −  0.388923 6.979471 3683948.0−  

6. REDUCTION OF THE GROUP OF AN EQUATION  
This action means the reduction of the number of needed permutations. We shall consider the case 
of an irreducible equation. It implies its group be transitive. Assuming that the group is not 
transitive, there must exist a set of roots less than n , and the permutations of the group G of the 
equation, leave them invariable or only permute them, but not with other elements (roots). Hence, 
the mentioned set of roots keeps the form of a product and is a divisor of the equation. Therefore, 
the equation is reducible. If the mentioned set did not exist, the group should be transitive and 
irreducible. 
The roots are not known, but we know that the roots of the given equation are all function of one 
of them, for example of 1x . Then, we can adjoin (according to the above mentioned meaning) a 
value of this root to the field of rationality Q. Thus, the group will be reduced to the permutations 
which leave 1x  invariable. A simple extraction of a root can reduce the group of an equation by 
extracting the root of the smallest degree, choosing anyone of the simplest radicals the adjoining 
of which diminishes the group of the equation. 

The sign of the Galois group delivered by the Maple software is given by the sign of the disjoint 
generators, i.e., permutations. If a permutation performs an odd number of inversions of the roots, 
it is called to be an odd permutation, and if it performs an even number, it is called an even one. A 
permutation with three letters (or numbers) yields an even result. The same result is obtained by 
two transpositions. 
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For solving (as procedure, not by solving formulae) an algebraic equation, according to Galois, it 
is necessary to reduce the group of the equation, namely G, till the identical (unit permutation) 
will be reached. For this purpose, a successive adjunction of the roots of binomial equations of 
prime degree may be performed. Let the examined equation and the first binomial equation and a 
prime number be: 

( ) 0; , ;pf x r q p n= = ≤  (22 a, b) 

where p  is the smallest prime number needed for reducing the group by adjunction. If it is not a 
prime number, then it can be written as the ratio of two prime numbers. In fact, this means, firstly 
to build an invariant permutation group of G. The coefficients of the given equation are 
considered to belong to number field F⊂ Q. The above integer number q  also belongs to the 
same number field. Let 1r  be the first complex root of index p  of unity above. Then we can form 
the number field, ( )1rFE =  also called adjoined field. Assume that the equations have the 
maximal invariant group over the field E . The permutation group of the given equation is G or 
an invariant group H  of it, containing also the binomial equation above included in E . Indeed, 
the permutation group of equation (22 a) already contains all roots of unity of index [ ]2,v n∈ , 
hence including p , because np ≤ . We take any rational function of all roots, hence it can be 
expressed only in function of a single one, say 1r . Therefore it will be not modified by the 
permutations of G . Finally, H  is an invariant subgroup of G . We shall repeat the procedure, 
forming the fields taking the other values of exponent p . The procedure will be repeated with 
another binomial equation and so on. Concerning the order of subgroups, there follows: 

G > 1G > ;id2 GG ⋅⋅⋅ ;/;1 1id21 +==⋅⋅⋅>> iiifffff GG  (23) 
 

where the sequence of iG  is called the constitutive group, and if  are called composition factors. 
Therefore, one obtains a sequence of subgroups, each of them being an invariant group of the 
preceding one. The ratio of the orders of each subgroup and the next one will be a prime number. 
The last term represents the final identical permutation. The Galois Theorem concerning the 
solving is usually expressed as follows: A general polynomial equation of degree n  is solvable by 
radicals in the number field Q  if its group is solvable, what means that its composition factors are 
prime numbers. Consider the group of a trinomial, it may be written in the form: 1,, altsym GG , the 

second is the invariant subgroup of the permutation group, the last being the identical 

permutation. But for 3=n , we have: 3
2
!;6! evenoddaltsym ======

nordnord GGGG . Hence, 

composition factors are 2 and 1, hence all prime numbers. The solving conditions are fulfilled. 
Consider now the permutation group of a quartic (equation of degree 4), the maximum invariant 
subgroups may be written in the form: ;1;1;2;4;12;24 id4321sym ====== HHHHHG  and 

the composition factors will be as follows: .1;2
1
2;2

2
4;3

4
12;2

12
24: ====f  There 

follows that all composition factors are prime numbers, and the polynomial of fourth degree is 
solvable by radicals. The permutation group of polynomial of degree 5 or greater have as 
invariant subgroup only the alternating group [2, p. 494], therefore, repeating calculations as 
above, it follows that the solving condition by radicals is not fulfilled. Concerning the reduction 
of the equation group, by using binomials as above, may be found in literature in several various 
forms. However, according to our experiments, the process does not modify the Galois procedure, 
but allows by a thought experiment (e.g., adjunction of a root), when possible, to work with 
equations of a lower degree. 
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From the sequence of successive invariant maximum subgroups above, there follows, that due to 
the adjunction of the binomial of degree p  we begin with the invariant group from a lower 

number p  instead of n , the reduction being 
p
n . It is worth noting that there is mentioned in 

literature, the case of equations of a degree higher than 4 that are solvable solutions by radicals, 
due to their form. We should add that some examples of this type satisfy indirectly the Galois 
conditions. For instance, the equation 0246 =+++ cxbxax , after the change of variable yx =2  
will be reduced to the third degree, and implicitly it fulfils the Galois conditions.  

7. THE GALOIS GROUPS 
The finite simple groups may be classified completely into several classes among which:  
1. Symmetric groups nS ; 2. Alternating groups nA ; 3. Dihedral groups nD  (non-abelian groups 

4D ); The groups nS  and nA  permute the set { n,....,1 }. The groups nD  correspond to the 
permutation of the vertices of any vertices−n  polygon. It is important to be mentioned [2, p. 
496], [5, p. 330] that a symmetric group also contains an alternating subgroup. Also, it is worth 
noting that for 4>n , the symmetric group contains only the alternating group as invariant 
subgroup. 
An interesting remark found in [6, p. 303], states that Galois always worked with the roots of the 
equations, but not with its coefficients what, according to our opinion, implies that he did not 
establish the permutation group of an equation the roots of which were not known [17], [18]. 

However, we should add that his proof of [1, pp. 57-63] is of an outstanding concision and clarity. 
In fact, he considered the solutions of Descartes [16, p. 262, p. 590], [6, p. 64] and others of the 
quartic equation, which with certain notation, yields an equation of degree 6 in, say z , that has to 

be solved (step 0). All its terms, with unknowns containing only powers of 2z , can be reduced to 
another equation of the third degree (step 1) that fulfils now the solving condition. Therefore, the 
latter delivers three intermediary solutions, (step 2), the square root of which gives the searched 
roots (step 3). Supposing that all occurring quantities are known, by adjoining them in order to 
assume as extracted a square root of the equation solving formula, the total number of 
permutations splits from 24 to 12 (step 1). It is the step 1 above. Similarly, by adjoining the 
occurring quantities, in order to assume as extracted a third degree radical of the equation solving 
formula, there remains only 4 permutations, (step 2), where the solutions are in expressions of 
second degree. From these expressions one obtains three roots, and the number of permutations 
will be 2 (step 3). By extracting the square roots, the final solutions will be obtained. It suffices to 
obtain only two final roots, the third results directly, using the previous two. 
With the current names, in the presented formal solution (thought experiment), in step 0, one had 
in view the starting permutation group of the given equation of order 24, denoting it by G . In step 
1, one had in view, in fact, the maximal invariant subgroup 11 HG =  of G , having the order 12. 
In step 2, one considered the maximal invariant subgroup 22 HG =  of 1G , having the order 4. In 
step 3, one considered the maximal invariant subgroup 33 HG =  of 2G , having the order 2. The 
extraction of the square root yields a final root. It follows that the solution has been obtained. 
Galois added also some general considerations. 
Galois considered that this is the general condition necessary and sufficient that a polynomial 
equation must fulfill for to be solvable by radicals, but with the mention the orders of composition 
factors being prime numbers as shown above. 
 

8. CONCLUSION 
The Galois Theory has been largely developed and analyzed, but after analyzing its content we 
saw that certain deductions remained limited at a general level, and practical aspects were not 
examined. One of them is the construction and the choice of transforming the given equation or 
polynomial for keeping a linear dependence between the roots of the given equation and the 
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transformed equations. The calculations, facilitated by the use of the symbolic language have 
been also presented. Supplementary results not found in the known publications have been 
obtained. Certain remarks of Galois, not specified in many known works, have been emphasised 
as simply as possible for their utility in practice. Another result we consider as useful, we 
established by examples that the establishing of the permutation of an equation, carried out by the 
two possibilities, by Galois procedure and by automorphism procedure, does not lead always to 
the same result. However, each procedure keeps certain advantages we mentioned.  

REFERENCES 
[1] *** Écrits et Mémoires Mathématiques d’Évariste Galois. Édition critique intégrale de ses 

manuscrits et publications par Robert Bourgne et J.-P. Azra, Gauthiers-Villars, Paris, 1962. 
[2] É. Picard, Traité d’Analyse, Tome III, Troisième Édition, Gauthier-Villars et C-ie, Paris, 

1928. 
[3] A. Cox, Galois, Theory, Second Edition, John Wiley & Sons, 2012. 
[4] ***Maple - 12 Handbook, 2011. 
[5] Th. Anghelutza, Curs de Algebră superioară (A Course of higher Algebra), Vol. II, Editura 

Universităţii din Cluj, 1945. 
[6] J.-P. Tignol, Galois Theory of Algebraic Equations, World Scientific Publishing Co. Pte. Ltd., 

2011. 
[7] É. Galois, Mémoire sur les conditions de résolubilité des équations par radicaux, Auteur: 

Évariste Galois (1811-1832). Publication: Mémoire manuscrit de 1830, publication dans le 
Journal de mathématiques pures et appliquées, pp. 417-433. Année de publication:1830. 
Nombre de pages:18. 

[8] H.U. Besche, B. Eick, E. O’Brien, The groups of order at most 2000, Electron. Res. Announc. 
Amer. Math. Soc., 7 (2001). 

[9] A. Nicolaide, An Approach to Common Roots and Elimination of Variables by Using a 
Symbolic Programming Language. Proceedings of the World Congress on, Engineering, 
2014, Vol. II, WCE 2014, July 2 – 4, 2014, London, U.K., pp. 870-875. 

[10] A. Nicolaide, Considerations on the Galois Theory and the Algebraic Solutions. Proceedings 
of the World Congress on Engineering, 2013, Vol. II, WCE 2013, 3 June-5 July, 2013, 
London, U.K., pp. 85-90.  

[11] C. Bright, Computing the Galois group of a polynomial. April 15, 2013 pp. 1-11. 
https_cs.uwaterloo.ca_, pp. 1-11. 

[12] Keith Conrad, Recognizing Galois groups nS  and nA , pp. 1-7.math.uconn. 7.math. 
uconn.edu/~konrad/blurbs/galoistheory/galoisSnAn.pdf 

[13] H.K. Sørensen, Niels Henrik Abel and the Theory of Equations. History of Science 
Department University of Aarhus, Denmark, E-mail: hkragh@imf.au.dk, 1999. 

[14] Keith Conrad, Some examples of the Galois Correspondence, math.uconn. edu/~konrad, 
2014. 

[15] Keith Conrad, Galois Groups of Cubics and Quartics (Not in Characteristic 2), math.uconn. 
edu/~konrad, 2014. 

[16] Ch. de Comberousse, Cours d’Algèbre Supérieure, Seconde Partie, Gauthier-Villars et Fils 
Imprimeurs-Libraires, Paris, 1890. 

[17] G. Verriest, Leçons sur la Théorie des Équations selon Galois, précédées d’une  
Introduction à la Théorie des Groupes. Gauthier-Villars, Imprimeur-Éditeur, Paris, 1939. 

[18] A. Nicolaide, Establishing the Galois Group of a Polynomial Equation the Roots of which 
are not Known, International Journal of Scientific and Innovative Mathematical Research 
(IJSIMR), Volume II, Issue 3, 2014,  pp. 249-255.  

[19] F. Rodrigues-Villegas, Handout 3, Department of Mathematics, University of Texas at 
Austin, TX 78712. 

 



Considerations on certain Theorems of the Galois Theory  
 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)              Page 891 

 

AUTHOR’S BIOGRAPHY 
Andrei Costin Nicolaide was born on the 1st of September 1933 in  
Bucharest. He received the degree of Electrical Engineer with honours, from 
Technical Institute of Craiova, Faculty of Electrotechnics (1956); Doctor of 
Engineering and Doctor of Sciences (Polytechnic Institute of Bucharest, in 1962 
and 1974, respectively). Full professor at the Transilvania University of Brasov 
(1969-2003), consulting professor since 2004. His scientific activity includes 
field computation by conformal transformation and numerical methods, and 
Special and General Theory of Relativity. He is a regular member of the 
Academy of Technical Sciences of Romania.  

                              


