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Abstract: The homogeneous cubic equation with four unknowns represented by the Diophantine
equation x* + y3 = 31(k2 + 382)2W2 is analyzed for its patterns of non — zero integral solutions. A few
interesting properties between the solutions and special humbers are presented.
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1. INTRODUCTION

The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In
particular, one may refer [4-15] for cubic equations with four unknowns. This communication

concerns with yet another interesting equation x>+ y® =31(k? +3s®)zw? representing the

homogeneous cubic equation with four unknowns for determining its infinitely many non-zero
integral points. Also a few interesting properties are presented.

2. NOTATIONS USED

e tyn -Polygonal number of rank nwith sizem.

o P - Pyramidal number of rank nwithsizem.

e Qgn, - Gnomonic number of rank a

e S0, - Stellaoctangular number of rank n

e pr, -Pronic number of rank n

o CPpp - Centered pyramidal number of rank nwith sizem.

2.1 Method of Analysis

The cubic diophantine equation with four unknowns to be solved for getting non-zero integral
solutions is

x*+y® =31(k* +3s%)zw’ (1)
Introduction of the transformation

X=U+V,y=u—-V and z=2uv )

©ARC Page | 923


mailto:mayilgopalan@gmail.com
mailto:vidhyasigc@gmail.com
mailto:premalathaem@gmail.com

M.A. Gopalan et al.

in(1) leadsto u®+3v? =31(k?+3s?)zw? ()
Now, we solve (3) through different methods and thus obtain different patterns of solutions to (1).
2.1.1 Pattern -I

Assume W=w(a,b)=a*+3b’ (4)
where a and b are non zero distinct integers

Write 31 as  31=(2+i3+/3)(2-i3V3) ()
Using (4) & (5) in (3) and applying the method of factorization, define

U +i/3v = (2+i3v3)(k +i+/3s)(a +i/3b)?

Equating the real and imaginary parts, we have
u=Kk(2a* —6b* —18ab) + s(—9a’ + 27b* —12ab)
v =k(3a” —9b” +4ab) + s(2a® —6b> —18ab)

Hence in view of (2), the values of X, y, z are given by
x = x(k,s,a,b) = k(5a* —15b* —14ab) + s(~7a* + 21b* — 30ab)
y = y(k,s,a,b) = k(-a® + 3b* — 22ab) + s(-11a’ + 33b* + 6ab) (6)
z=12(k,s,a,b) =k(4a® —12b* — 36ab) + s(—18a* + 54b* — 24ab)

Thus (4) and (6) represent the non zero integral solutions to (1).

A few interesting properties observed are as follows:

1. x@1al)+5y(@lal)+t,, =1(mod 185)

2. x(k,s,a1)—kt,, +st,, +15k —21s = 0(mod 2a)

3. x(k,Kk,ty,,t;,,,) +5y(k, Kty L5 ,,,) = —62k(2t,, —3Pr, ,+ 2Pt,)

4. [x(k,s,a,b)+y(k,s,a,b)]* =z°(k,s,a,b)

2.1.2 Pattern —II

Rewrite (3) as u? +3v? = 31(k? + 3s®)zw? *1 )
Write 1 as 1=%(1+i\/§)(1—i\/§) (8)

Following the procedure similar to pattern-l, the corresponding non-zero distinct integral
solutions of (1) are found to be

x = x(k,s,a,b) = k(-a* +3b* — 22ab) + s(-11a* + 33b” + 6ab)
y = y(k,s,a,b) = k(—6a’ +18b* —8ab) + s(—4a® +12b* + 36ab)
z =1z(k,s,a,b) = k(-7a® + 21b* —30ab) + s(—15a° + 45b* + 42ab)

along with (4).
Properties:
1. x(-113,b) +z(-113,b) —ct;,, =164 (mod 246)
2. 7x(Ls,a,a-1)-z(1s,a,a-1)+20(S, -1)+8t,, =0(mod 62)
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3. x(-111,a,a+1)—2Ct,,,, +2=0

4. 31{6x(LLa(a+1),a+2)-ylLa(a+l),a+2)+744P° +62(Pr,)’} is a Nasty
number.

2.1.3 Pattern —III

Instead of (5), write 31 as 31= %(7 +i5+4/3)(7 —i5+/3)

Following the procedure similar to pattern-l1, and performing a few calculations, the
corresponding non-zero distinct integral solutions of (1) are given by

x = x(k,s,a,b) = k(6a® —18b* —8ab) + s(—4a* +12b* — 36ab)
y = y(k,s,a,b) = k(a® —3b* — 22ab) + s(-11a* + 33b* — 6ab)
z =1(k,s,a,b) = k(7a® — 21b> —30ab) + s(-15a° + 45b* — 42ab)
along with (4).
Properties:
1. x(532,b(b+1))+54(Pr,)? + 2ct 4, = 0(mod74)
2. z(LLaa(a+1)—96(t,,)* +144P° +t, . = a(mod7)
3. 7y(k,s,a,2a” -1)—-z(k,s,a,2a® —1) +124 kSO, = 0(mod 62)
4. 93{x(k.1,(a+1),a)-6y(k1(a+1),a)-124kPr,+186t, .} isa Nasty number.

2.1.4 Pattern -1V
Instead of (8), write 1 as 1= 4i9(1+ i4\/§)(1— i4\/§)

Following the procedure similar to pattern-11l, and performing a few calculations, the
corresponding non-zero distinct integral solutions of (1) are

x = x(k,s,a,b) = k(-70a* + 210b* — 1064 ab) + s(-532 a* +1596 b* + 420 ab)
y = y(k,s,a,b) = k(—301a’ + 903b* — 322 ab) + s(—161a* + 483b° + 180 ab)
z =12(k,s,a,b) = k(-371a” +1113b* —1386 ab) + s(—693a° + 2079 b* + 2226 ab)
Properties:
1. x(-11aa(a+1))—1386(Pr,)*> —2968P’ —t, , = a(modl6)
2. Xx(k,s,a,b)+y(k,s,ab)—z(k,s,ab)=0
3. [x(k,s,a,b)+y(k,s,a,b)]* - z*(k,s,a,b) =0
4. 12(x*(k,s,a,b)+y*(k,s,a,b)) —6z°(k,s,a,b) is a Nasty number.
3. CONCLUSION
To conclude, one may search for other patterns of solutions and their corresponding properties.
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