
International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 

Volume 2, Issue 10, October 2014, PP 844-854 

ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) 

www.arcjournals.org 

 

©ARC                                                                                                                                                Page | 844  

Pulsatile Motion of Non-Newtonian Fluid with Heat and Mass 

Transfer through a Porous Medium in a Solid Cylindrical Pipe 

in the Presence of Magnetic Field 

Nabil T.M. El-dabe 
a)

, Mohamed Y. Abou-zeid 
a,c)

, Hemat A. Sayed 
b)

 

a) 
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt 

b) 
Department of Mathematics, Faculty of Science, Zagazig University Zagazig, Egypt 
c) 

Department of Mathematics, Faculty of Science, Tabuk University, Tabuk, KSA

 
Abstract: The pulsatile flow of non-Newtonian fluid which obeying biviscosity fluid ( Casson model) 

stress-strain relation is studied. We take into consideration the porosity of medium and the unsteady motion 

with heat and mass transfer under the effects of magnetic field and heat source. The equations of 

momentum, energy and concentration have been solved by using Lightill method. The governing equations 
are solved analytically by using Mathematica package. The velocity, temperature and concentration 

distribution are obtained. The effects of various parameters of the problem on these distributions are 

discussed and depicted graphically through a set of figures.  
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1. INTRODUCTION 

The problem of pulsatile flow have gained importance due to their immediate practical 

applications in biomechanical and engineering science. In physiology, pulsatile mechanism is 

involved in urine transport from kidney to bladder through the ureter, movement of chime in the 
gastrointestinal tract, transport of spermatozoa in the ductus efferentes of the male reproductive 

tracts, and in the cervical canal, in movement of ovum in the fallopian, transport of lymph in the 

lymphatic vessels. In situations like travel in vehicles, aircraft, operating jackhammer and sudden 
movements of body during sports activities, the human body experience external body 

acceleration. Prolonged exposure of a healthy human body to external acceleration may cause 

serious health problem like headache, increase of pulse rate and loss of vision on account of 

disturbances in blood flow [1]. 

The analysis of the mechanisms responsible for pulsatile transport have been studied by many 

authors. The problem of pulsatile flow with reference to stenosis in microcirculation was analysed 

by Bitoun and Bellet [2]. Rao and Rathna Devanathan [3] and Schneck and Ostrack[4] studied 
pulsatile flow through circular tubes varying cross-section at low Reynolds number. Young and 

Tasi[5-6] studied the steady and unsteady flows across a stenosis experimentally which can be 

found also in Siouffi et al. [7] . Eldabe et al. [8-9] studied pulsatile magneto hydrodynamic 
viscoelastic flow through a channel bounded by permeable plates and the effect of couple stresses 

on pulsatile hydro magnetic poiseuille flow. In these studied the tube wall is taken to be 

impermeable. Macey[10,11] discussed the steady flow of a viscous fluid through a circular tube 

with a permeable wall. The pulsatile flow of non-Newtonian fluids in pipe discussed by Edwards 
et al. [12].  The problem of pulsatile flow of MHD non-Newtonian fluid obeying power law 

model with convection heat transfer through a non –Darcy porous medium between two coaxial 

cylinders is studied by Abou-zeid[13].  Flow through porous media is very prevalent in nature and 
therefore the study of flow through a porous medium has become of principle interest in many 

engineering applications. Many authors have studied the effect of porous medium on the motion 

of the fluid. Some of these studies have been made by Abdel-hady and Kamel [14] discussed the 

steady MHD flow of a viscoelastic fluid through a porous medium. Numerical study of pulsatile 
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MHD non-Newtonian fluid flow with heat and mass transfer through a porous medium between 
two permeable parallel plates was studied by Eldabe et al. [15]. 

In this paper, the main aim is to obtain a numerical solution of the problem of unsteady plusatile 

flow with heat and mass transfer. The fluid used is biviscosity fluid through a uniform porous 

media in a solid cylindrical pipe in the presence of magnetic field. The governing equations were 
solved numerically by using Mathematica. The velocity, temperature and concentration 

distribution are obtained. The velocity, temperature and concentration distributions are calculated 

for different values of  sP , uP , Re ,  K , M , β , ω , t , Pr , q , Scand Sr . 

2. FORMULATION OF THE PROBLEM 

Consider the unsteady flow of non-Newtonian fluid obeying Casson model through a permeable 

infinite cylindrical tube under the action of external uniform magnetic field of strength 0B  . 

Choose cylindrical coordinates z)θ,(r, , where z is the axis of the tube.     

The constitutive equation of the Casson fluid model is  

cijcyβ

cijyβ

ij

ππ,e)2πp(μ2

ππ,e)2πp(μ2
τ


 

Where yp  is the yielding stress, ijij eeπ , where ije is the  j)(i, component of the deformation 

rate and 
y

cβ

p

2πμ
β  is the dimensionless upper limit of apparent viscosity coefficient. For 

ordinary Newtonian fluid ( 0p y ). 

                                      

                                                  Fig 1. Schematic of the Problem 

The governing equations used in this problem can be written as follows: 

Continuity equation:  

0V.ρ
t

ρ
,                                                                                                        (1) 

Momentum equation in porous medium under the effect of uniform external magnetic 

field 
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μ
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Temperature equation with heat generation 

QTTk
dt

dT
cρ 2

cp ,                                                                                            (3)   

Concentration equation with thermal diffusion 
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Where )BVE(σJ is the current density vector, σ is the electrical conductivity , 

HμB e  is the magnetic field strength, eμ is the magnetic permeability, H is the applied 

magnetic field, E is the electric field, V is the velocity fluid, ρ is the density, )(ττ ij is the stress 

tensor, p is the pressure, t is the time, βμ is the plastic viscosity of the fluid , pk  is the 

permeability porous medium, T  is the fluid temperature, ck is the thermal conductivity of the 

fluid, pc  is the specific heat at constant pressure, Q  is the heat generation, C is the fluid 

concentration, mD  is the coefficient of mass diffusivity, Tk is the thermal diffusion rate, mT is the 

mean fluid temperature.                      

Since the flow parameters are independent of the azimuthal coordinateθ , the velocity is given by 

u)(0,0,V and the magnetic field vector is ,0,0)(BB 0 .  

Now, we shall consider the magnetic Reynolds number is very small, therefore the induced 
magnetic field and external electric field are neglected. Under these assumptions, the equations 

(2-4) can be written as: 
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The approximate boundary conditions are 
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 Let us introduce the following dimensionless quantities as follows: 
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After substituting from equation (9), equations (5), (6) and (7) may be written in 

dimensionless form after dropping star mark.  
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The dimensionless boundary conditions are 
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1rat1υand1θ 0,u
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Where  
ρ

aβσ
M

22

0  (the magnetic field parameter), 
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3. METHOD OF SOLUTION 

For pulsation pressure gradient, let 

tiω

os ePP
z

P
,                                                                            (14) 

Where ω is the frequency, sP and oP  are the steady component and the oscillatory component of 

pressure gradient, respectively 

The equations (10), (11) and (12) can be solved by using the following perturbation technique:      

tiω

os

tωi

os

tωi

os

eυυυ

eθθθ

euuu

,                                                                                                                       (15) 

Substituting from (14) and (15) in (10), (11) and (12) and equating the like terms on both sides, 

we get the following system equations: 
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Subject to the following boundary conditions 
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4. NUMERICAL RESULTS AND DISCUSSION 

The system of equations that governs the non-Newtonian fluid flow in a solid cylindrical pipe in 
the presence of magnetic field and porous medium are solved analytically by using Lightill 

method. The formulas for the velocity, temperature and concentration distributions are obtained, 

and calculated for different values of  sP , uP , Re ,  K , M , β , ω , t , Pr , q , Scand Sr  in 

figures (2-14). 

The effects of physical parameters on the velocity distribution are indicated through figures 1-8. 

In these figures the velocity distribution u  is plotted versus the coordinate r . Figures (2) and (3) 

show the behavior of the velocity u  for different values of the steady component of pressure 

gradient sP  and the oscillatory component of pressure gradient oP respectively. It is seen from 

Figs. (2) and (3), that the velocity u  increases with increase both of sP  and oP  i.e. the increase of 

the pressure gradient caused increment in the movement of fluid. Figure (4) illustrates the change 

of the velocity u  for several values of the non-Newtonian fluid parameter β . It is observed from 

this figure that the velocity u  increases with the increase of β . The result in figure (4) is in 

agreement with the result which is obtained by Abdelnaby et al. [15]. The effect of the magnetic 

parameter M  on the velocity u  is shown in Fig. (5). It is clear that the velocity u  decreases with 

the increase of the magnetic parameter M , because the uniform magnetic field is in resistant 

direction to the movement of the fluid. Similarly, if we draw the velocity for different values of 

the permeabilty parameter K , we will obtain a figure in which the behavior of the curves are the 

same as those obtained in figure (6). The velocity u for various values of the time t  and the 

frequency of the oscillating ω  are exhibited in Figs. (7) and (8), respectively. From these figures, 

we observed that the velocity u  decreases with increase both of t and ω .  

The effect of the heat generation q  on the temperature θ  is shown in Fig. (9), and it shown that 

the temperature θ  increases by increasing q . Because the fluid is exposed to heat and this is 

shown form the heat equation and that this result is agreement with those obtained by Abou-zeid 

[13]. In figure (10) the effect of Prandtl number Pr on the temperature θ is presented. From this 

figure, we observed that the effect of Pr  on θ  is similar to the effect of q  on θ  illustrated in Fig. 

(10).  

Figures (11) gives the change of the concentration υ  for several values the heat source parameter

q . It is noted from this figures that the concentration decreases with increasing q . We observed 

that this result is a proven fact because the heat source is inversely proportional to concentration. 

The effects of Schmidt number Sc , Soret number Sr  and Prandtl number Pr on the 

concentration υ  are elucidate in figures (12), (13) and (14), respectively. We observed from these 

figures that the effects of these parameters are found to be similar to the effect of the heat source 

parameter q  on υ  illustrated in Fig. (11).  

 
Figure(2) 
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Figure(3) 

 
Figure (4) 

 
Figure (5) 



Pulsatile Motion of Non-Newtonian Fluid with Heat and Mass Transfer through a Porous Medium in 

a Solid Cylindrical Pipe in the Presence of Magnetic Field 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)              Page 850 

 
Figure (6) 

 
Figure (7) 

 

Figure (8)    
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 Figure (9) 

 
Figure (10) 

 

 
Figure (11) 
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Figure (12) 

 
Figure (13) 

 
  Figure (14) 
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5. CONCLUSION 

In this paper, we have studied the unsteady pulsatile motion of non-Newtonian Casson fluid 

through a porous medium in a permeable cylindrical pipe in the presence of magnetic field. The 

equations of momentum, energy and concentration have been solved by using perturbation 
technique. The governing equations were solved numerically by using Mathematic. The velocity, 

temperature and concentration distribution are obtained. The effects of various parameters of the 

problem on these distributions are discussed and depicted graphically through a set of figures. 
Hence, this paper deals with an important branch of fluid mechanics which has many important 

applications in many fields, such as biology, medicine and chemistry and also in the space 

science. For example: 

1. The rheology of blood has received much study. Blood is rheologically complex on two 
counts: it is a suspension because erythrocytes with characteristic dimensions of several 

micrometers are present in excess of 40 vol. and the suspension fluid itself exhibits non-

Newtonian behavior because of the presence of high molecular weight protein. The 
importance of rheological properties of other body fluids is now recognized. In particular, 

the rheological response of mucous is respiratory system of both infants and adults are an 

important factor for proper respiratory system of both infants and adults are an important 

factor for proper respiratory behavior. For engineering purpose, one is more interested in 
the values of the velocity and heat transfer than in the shape of the velocity and 

temperature profiles. 
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