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Abstract: In this work, the unsteady motion of an incompressible micropolar fluid between two infinite 

parallel plates under the effect of slip boundary conditions for both velocity and microrotation is 

considered. The motion of the fluid is generated by applying a time dependent pressure gradient between 

the two plates. The Laplace transform technique and the state space approach are utilized to obtain the 

analytical solution in the Laplace domain. The inverse Laplace transform is evaluated numerically. The 

velocity and microrotation functions are represented graphically and the effects of the slip, and 
micropolarity parameters on the flow field are discussed.  
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1. INTRODUCTION 

The motion of the classical viscous fluids is controlled accurately by Navier-Stokes equations. 

However, these equations cannot describe adequately the motion of some types of fluids with 

microstructure, such as muddy water, chemical suspensions, lubricants, etc. Eringen [1] has 

introduced his theory of micropolar fluids to recover the inadequacy of Navier-Stokes equations 

describing the correct behavior of such fluids taking the motion of the microelements into 

consideration. Physically, micropolar fluids represent fluids consisting of randomly oriented 

particles suspended in a viscous medium. In the theory of micropolar fluids, there are two vectors 

characterizing the motion of the fluid; the classical velocity vector describes the motion of the 

macro-volume element and the microrotation vector represents the motion of the micro-volume 

element. The study of micropolar fluids can model many physical applications in the engineering 

and biological fields such as animal blood flow, chemical suspensions, liquid crystals and 

lubricants [1, 2]. 

The no-slip boundary condition has been used extensively in fluid dynamics. However, the slip 

condition proposed by Navier [3], seems to be more realistic. It assumes the possibility of fluid 

slippage along the surface of the boundary. The slip condition assumes that the tangential velocity 

of the fluid particles relative to the solid boundary at a point on the boundary is proportional to the 

tangential stress acting at the point of contact. The constant of proportionality is named slip 

coefficient and is assumed to depend only on the nature of the fluid and solid boundary. The slip 

condition has been utilized by several researchers in their works in the classical Newtonian fluids 

[4-7] and in the micropolar and microstretch fluids [8-11].  

The unsteady unidirectional Poiseuille flow of a micropolar fluid between two parallel plates with 

no-slip and no-spin boundary conditions was investigated by Faltas et al [12]. Ashmawy [8] 

studied the problem of Couette flow of an incompressible micropolar fluid using slip condition. 

The state space approach was employed by Devakar and Iyengar [13] to discuss the Stokes’ first 

problem of a micropolar fluid with no-slip and no-spin conditions. They also used the same 

technique in [14, 15] to discuss the motion of a micropolar fluid between two parallel plates 

taking the classical no-slip and no-spin boundary conditions into consideration.  
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In this work, we apply the state space approach to investigate the unsteady motion of a micropolar 

fluid flow between two parallel plates. The slip conditions are applied and the motion of the fluid 
is produced by applying a time dependent pressure gradient. 

2. FORMULATION OF THE PROBLEM 

The unsteady motion of an isothermal incompressible micropolar fluid flow, in the absence of 

body forces and body couples, is governed by the following differential equations; 

,                                                                                                                            (2.1) 

,                                                                        (2.2) 

,                                 (2.3) 

where the scalar quantities  and  are, respectively, the fluid density and gyration parameters. 

The vectors and are representing the velocity and microrotation, respectively, and  is the 

fluid pressure at any point. The material constants  represent the viscosity coefficients and 

 represent the gyro-viscosity coefficients. 

The stress and couple stress tensors are given by 

 ,                                              (2.4) 

 ,                                                                                     (2.5) 

where  and  are, respectively, the Kronecker delta and the alternating tensor.  

We now consider the flow of a micropolar liquid between two infinite parallel plates separated by 

a distance . The two plates are stationary and the fluid starts due to a sudden pressure gradient. 

Working with the Cartesian coordinates , with -axis along the lower plate, -axis 

perpendicular to the plates, and -axis is perpendicular to the plane of motion. The flow is along 

x-axis then the velocity and microrotation vectors take the forms 

   and  .  

The equation of continuity (2.1) is satisfied automatically and equations (2.2)-(2.3) reduce to 

,                                                                                     (2.6) 

,                                                                                                  (2.7) 

The initial and slip boundary conditions applied to the problem at hand are assumed to be  

 for all ,                                                                        (2.8) 

,                                                           (2.9) 

,                                                          (2.10) 

where  are the velocity slip parameters of the two plates. Also,  are 

representing the microrotation slip parameters of the two plates. These parameters depend only on 

the fluid and the material of the plates. The no-slip case can be recovered when the slip 

parameters  and the no-spin case is obtained when . 

Using (2.4) and (2.5), the non-vanishing stress and couple stress components are found to be 

                                                         (2.11) 

The following non-dimensional variables will be used 

,                                            (2.12) 

 .                                                         (2.13) 
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In terms of these variables, after dropping the asterisks for convenience, the differential equations 

(2.6) and (2.7) can be rewritten in the forms 

,                                                                                                             (2.14) 

,                                                                                                (2.15) 

where , and  .  

In view of (2.12)-(2.13), the non-dimensional boundary conditions (2.9) and (2.10) become 

,                                                          (2.16) 

,                                                         (2.17) 

where  . 

3. SOLUTION OF THE PROBLEM 

Applying the Laplace transform defined by 

,                                                                         (3.1) 

The differential equations (2.14) and (2.15) reduce to 

,                                                                                                  (3.2) 

,                                                                                                               (3.3) 

where  

To obtain the solution of the coupled differential equations (3.2)-(3.3) subject to the boundary 

conditions (2.16)-(2.17), in the Laplace domain, we employ the technique of state space approach. 
To do this, the two equations (3.1)-(3.2) are written in the matrix form 

,                                                                                     (3.4) 

where 

 ,                    (3.5) 

 .                                                                                        (3.6) 

The solution of the matrix differential equation (3.4) can be easily found to be 

.                                              (3.7) 

The characteristic equation of the matrix  is 

.                                                                                                  (3.8) 

This characteristic equation has the roots , where 

  .                                 (3.9) 

The Maclaurin’s series expansion of  is given by 

  .                                                                                   (3.10) 
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Using Cayley-Hamilton theorem, the infinite series (3.10) can be written in the form  

,                                                         (3.11) 

where  is the fourth order unit matrix and  and are parameters depending on  and . 

Then, the characteristic roots ±  and ±  satisfy equation (3.11) and hence we obtain the 

following system of linear equations after replacing the matrix  by its characteristic roots 

.                                                         (3.12) 

Solving this system of algebraic equations, we get ,   and  in the forms 

,    (3.13) 

,                  (3.14) 

where . 

The elements  of the matrix  can be obtained after substituting  

 into equation  to be 

,                                (3.15) 

,                               (3.16) 

,                   (3.17) 

,                  (3.18) 

Using (3.11), the solution (3.7) can be rewritten in the form  

 ,                                            (3.19) 

 .                                                         (3.20) 

The explicit solution of , can be determined by using the Maclaurin series 

expansion. 

.                                                                                   (3.21) 

By using Cayley-Hamilton theorem, the infinite series (3.21) can be written as 

                                                                      (3.22) 

Therefore 

 .                               (3.23) 

Hence, equation (3.20) can be written in the form 

 ,                  (3.24) 

 ,                  (3.25) 

 ,                  (3.26) 

 ,                  (3.27) 

where  

 ,                               (3.28) 

 ,                  (3.29) 
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 ,                  (3.30) 

 .                  (3.31) 

Applying the two boundary conditions (2.16), after taking the Laplace transform, we get 

 .                                            (3.32) 

Substituting from (3.32) into equations (3.24)-(3.27), we get the solution in terms of the two 

unknowns   and as 

  (3.33) 

  (3.34) 

,(3.35) 

 (3.36) 

The unknowns functions  and  can be determined by satisfying the boundary 

conditions (2.17), after applying the Laplace transform, to be 

 ,                                                         (3.37) 

 ,                                                         (3.38) 

 ,                               (3.39) 

, 

                                                                                                                                        (3.40) 

 ,                               (3.41) 

 ,                               (3.42) 

where are the values of  evaluated at .  

4. THE NUMERICAL INVERSION OF LAPLACE TRANSFORM 

To get the inverse Laplace transform of the velocity and microrotation components, we employ a 

numerical inversion technique developed by Honig and Hirdes [16]. In this method, the inverse 

Laplace transform of a function is approximated by 

                                (4.1) 

where  is sufficiently large integer chosen such that, 

 ,                                                                                     (4.2) 

where  is a small positive number that corresponds to the degree of accuracy required. The 

parameter h is a positive free parameter that must be greater than real parts of all singularities of 

(s). 
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5. NUMERICAL RESULTS 

Now we represent the obtained results graphically. Two different cases are considered; flow due 

to a constant pressure gradient and flow due to an oscillatory pressure gradient. In the numerical 

calculations, we have taken and . 

CASE 1 

In this case, we assume that the dimensionless pressure gradient is given by 

–
,                                                                                                               (5.1) 

where the Heaviside unit step function  is defined by 

 

CASE 2 

Here, the pressure gradient is assumed to be dependent of the time and is given by 

–
 .                                                                                                               (5.2) 

Figs. 1 and 2 show the distribution of the velocity and microrotation versus the distance between 

the two plates for different times when the constant pressure gradient is assumed. It can be 

concluded that the values of the velocity and microrotation increase with the increase of the time 

and the steady state case is recovered when the time approaches infinity. The velocity and 

microrotation distributions for different values of the velocity slip parameter  are shown in Figs. 

3 and 4, respectively. It can be observed that the velocity values decrease with the increase of this 

parameter while the microrotation increases. Also, the case of no-slip is obtained as the slip 

parameter goes to infinity as shown in the figures. The velocity and microrotation profiles for 

different microrotation slip parameter , keeping  fixed, are represented in Figs. 5 and 6. It is 

noticed from Fig.5 that this parameter does not affect on the velocity while Fig.6 shows that this 

parameter has a considerable effect on the microrotation. Finally, the distributions of the velocity 

and microrotation for different values of the micropolarity parameter are represented in Figs. 7 

and 8. It is observed that the increase in this parameter results in an increase of the values of both 

velocity and microrotation. If the micropolarity ratio  becomes zero, we return to the classical 

case of viscous fluid. The variation of the velocity and microrotation for the case of sine 

oscillation are represented in Figs. 9 and 10, respectively. 

 

Fig.1. Velocity variation versus distance at   and for case 1  
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Fig.2. Microrotation variation versus distance at  and for case 1 

 

Fig. 3. Velocity variation versus distance at and   for case 1 

 

Fig. 4. Microrotation variation versus distance at  and  for case 1 
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Fig. 5. Velocity variation versus distance at  and  for case 1 

 

 

Fig. 6. Microrotation variation versus distance at  and   for case 1 

 

Fig.7. Velocity variation versus distance at α= =10 and for case 1 
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Fig.8. Microrotation variation versus distance at and for case 1 

 

 

Fig.9. Velocity variation versus distance at  and for case 2  

 

 

Fig.10. Microrotation variation versus distance at  and for case 2  
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6. CONCLUSION 

The State Space approach is utilized to study the unsteady micropolar fluid flow between two 

parallel plates. The slip boundary condition is applied for both velocity and microrotation. It is 

concluded that the slip for velocity has a considerable effect on the flow field. Also, it is observed 
that the microrotation slip has no effect on the velocity vector while it has a remarkable effect on 

the microrotation. The no-slip case is recovered when the slip parameters approaches infinity. It is 

also concluded that the time has a considerable influence on the flow field especially at small 

times and that the steady state is obtained at large time when the constant pressure gradient is 
considered. Finally, it is noticed that the micropolarity parameter increases the values of the 

velocity and microrotation. 
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