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Abstract: The paper intends to establish a mean value theorem for n- real valued functions. It is proved 

with the help of Mathematical induction. In addition to this, the mean value theorem for two functions 

which contain n components each is also instituted with the support of standard mean value theorems. For 

showing the theorems, the nature of continuity and differentiability of the functions have been adopted 

conditionally. 
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1. INTRODUCTION 

Mean value theorems are pillars of modern analysis which help us to gain some new inventions 

with analytical approach. Many Mathematicians like Michel Rolle, Joseph Louis Lagrange, 

Augustin-Louis Cauchy etc. contributed their might of valuable results to the field of real 

analysis. New eras and constructive ideas were opened for the next generation in the continuation 

of their work. Several generalizations and exclusive extensions have been established by 

Hardy,G.H[2],Buck,R.C[1],Simmons,G.F[4],Ruddin,W[3] and Smith,K.T[5].Mean value 

theorems can apply in real life situation for analyzing in a better way to obtain the fruitful 

solution. In this paper, the authors utilized the concept of mathematical induction. Mathematical 

induction is an effective and efficient tool in differential calculus to achieve a set of necessary 

goals.  

An inductive attempt is made to prove mean value theorem for n real valued functions. The main 

essence of the principle of mathematical induction is the noticeable deterioration in performance 

of a step which leads inevitably to next step. Let K be any inter(may be positive, negative, zero) 

and
0 0K K +1 KS ,S ...S ... be the propositions where each integer K ≥ K0 which satisfy (i) SK0 is true(ii) 

SK implies SK+1 for every integer K then SK is valid for every integer K ≥ K0.On other words, a 

statement is valid for K=1,K=2,…, also assume that the statement is valid for K and  if it is also to 

be proved to valid for K+1,then the statement can be generalized for any integer K. This 

phenomenon is being utilized in many applications and complex situations to obtain the validity 

of the results. 

In this paper, the authors aimed to establish a mean value theorem for n- real valued functions. It 

is proved with the help of Mathematical induction. In addition to this, the mean value theorem for 

two functions which contain n components each is also instituted with the back ground of 
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standard mean value theorems. The continuity and differentiability of the functions have been 

considered for establishing lemmas and the theorems. 

2. MEAN VALUE THEOREM  FOR N-REAL VALUED FUNCTIONS 

The following lemma will be used to prove the mean value theorem for n-real valued functions. 

2.1 Lemma:   

Prove that 
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where fk (K=1,2,3….n) is continuous on [a,b] and derivable on (a,b). 

Proof: It can be shown with the aid of mathematical induction. 

In the case of having one and only fuction,it is trivially true. 

If the system involves two real valued functions (i=2)  
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By above result is true by Cauchy’s mean value theorem. 

If the system necessitates three real valued functions (i=3) ,then 
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 It can be verified as below 

Define a function h(x) as 
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Therefore h (a) =h (b) is true. Thus h satisfies the three conditions of Rolle’s Theorem. 

(i) h is continuous on [a,b] 

(ii) h is derivable on (a,b) 

(iii) h(a)=h(b) 

The three conditions of Rolle’s theorem are satisfied, then there exists at least one constant c 

which belongs to (a,b) such that h'(c) = 0. 
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It is observed that the statement is valid for the three real valued functions. 
Now, it is assumed that the statement (1) is true for i=k. 
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Now it requires to verify the validity of the statement(1) for i=k+1. 
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By mathematical induction, it is also valid and true for K+1. 
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2.2 Theorem: Let f1, f2,…,fn  are n-real valued functions defined on [a,b] which satisfy the 

following conditions.                                                                                                   

(i) f1, f2,…,fn continuous on [a,b] 

(ii) f1, f2,…,fn, derivable on (a,b) 

then there exists at least one ),( bac such that 
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Proof: Define a function  
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Clearly g is continuous on [a,b] and derivable on (a,b). 

For employing Rolle’s theorem, it is necessary to verify that g(a)=g(b), 
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Therefore g(a)=g(b) is true. 
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Thus,g satisfies the following conditions.

 (i) g is continuous on [a,b] 

(ii) g is derivable on(a,b) 

(iii) g(a)=g(b) 

The three conditions of Rolle’s theorem are satisfied, hence by Rolle’s theorem there exists at 

least one ),( bac  such that g'( c) =0 
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Hence the proof 

2.4 Lemma:  Show that 
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where fi (i=1,2,3…n) and gm are continuous on [a,b] and derivable on (a,b). 

Proof: The above result is proved by mathematical induction 
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By Cauchy’s mean value theorem the above result is true 

Let us assume to consider that the statement (3) is valid for n=k. 
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Now, it is essential to verify that the statement (3) is true for n=k+1 
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Therefore the statement (3) is valid for n=K+1. 

2.5 Lemma: 

 Prove that 
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where fk and gk (k=1,2,3..n) are continuous on [a,b] and derivable on (a,b).
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Proof:-   

By Cauchy mean value theorem, it can be stated as  
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Therefore the statement(4)  is true for n=2. 

Now, it is presumed that the statement (4) is true for n=k  
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2.6 Corollary: 

Let f and g contain n components f1, f2, f3 ... fn and g1, g2… gn respectively .All components are 

real valued functions defined on [a, b] which satisfy the following conditions. 
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Therefore L.H.S = R.H.S  

Hence by mathematical induction, it is stated that h(a)=h(b) is true for any integer K. 

It is identified that h satisfies the following conditions. 

(i) h(x) is continuous on [a,b] 

(ii) h(x) is derivable on (a,b) 

(iii) h(a)=h(b) 

The three conditions of  Rolle ’s theorem are satisfied. Then there exists at least one c (a,b) such 

that  h'(c) = 0 

 h'(x) =

n

i
ii

n

i
iii

n

i

n

i
abxabx ffgggf

11

'

11i

'

))()(()())()(()(

 
By the Rolle’s theorem, h'(c) =0 
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Hence the proof. 

3. CONCLUSIONS 

The mean value theorem of n-real valued functions is established with an inductive approach. In 

addition to this, the mean value theorem for two functions which contain n components each is 

also proved with the back ground assistance of standard mean value theorems. Few necessary 

lemmas are also situationally substantiated.   
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