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Abstract: This manuscript is a study on Pre-A*-algebra A  in view of it is like a partially ordered set. 

Using a binary operation in Pre-A*-algebra, an observation is made on Pre A*-Algebra as a partially 

ordered set with respect to binary operation  and obtained corresponding results. It is also make available 

an equivalent condition for a Pre A*-algebra become a Boolean algebra.  
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1. INTRODUCTION      

In a draft manuscript entitled “The Equational theory of Disjoint Alternatives”, E. G. Manes 

(1989) introduced the concept of Ada (Algebra of disjoint alternatives)  , , , (-) ,(-) ,0,1,2A 
   

which is however differs from the definition of the Ada of E. G. Manes (1993)  later paper 

entitled “Adas and the equational theory of if-then-else”. While the Ada of the earlier draft seems 

to be based on extending the If-Then-Else concept more on the basis of Boolean algebras and the 

later concept is based on C-algebras A (  ,  „ ) introduced by Fernando Guzman and           

Craig C. Squir (1990). P. Koteswara Rao (1994) first introduced the concept of A*-algebra 

    , , , ,   - ,0,1,2A


      not only studied the equivalence with Ada, C-algebra, Ada‟s connection 

with 3-Ring, Stone type representation but also introduced the concept of A*-clone, the If-Then-

Else structure over A*-algebra and Ideal of A*-algebra.  

J.Venkateswara Rao (2000) introduced the concept Pre A*-algebra    , , ,  A      analogous to C-

algebra as a reduct of A*- algebra. Venkateswara Rao.J, Praroopa.Y (2006) made a structural 

study on Boolean algebras and Pre A*-Algebras.  

Boolean algebra depends on two element logic. C-algebra, Ada, A*- algebra and our Pre A*-

algebra are regular extensions of Boolean logic to 3 truth values, where the third truth value 

stands for an undefined truth value. The Pre A*- algebra structure is denoted by   , , ,  A      

where A is non-empty set,  ,  are binary operations and ( )    is a unary operation. 

In this paper we define a relation  on Pre A*-algebra with respect to the binary operation , we 

discuss the properties of a Pre A*-algebra like a poset. We find the necessary conditions for a 

poset to become a lattice. We also present a equivalent condition for a Pre A*-algebra become   a 

Boolean algebra. For any aA define aA ={xA / a x = x }and 
ax = a  x~ then ( aA ,  , , a ) 
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is a Pre A*-algebra. We also define a mapping ,a b from bA to aA  by ,a b  (x) = a x for all 

x bA  is a homomorphism of Pre A*-algebras. 

PRELIMINARIES  

1.1. Definition: The relation R on a set A is called a partial order on A when R() is reflexive, 

anti-symmetric, and transitive. Under these conditions, the set A is called a partially ordered set or 

a poset. Frequently we write (A, R) or (A, ) to denote that A is partially ordered by the relation 

R(). Since the relation  on the set of real numbers is the prototype of a partial order it is 

common to write  to represent an arbitrary partial order can be described as follows: 

1. For all a  A, a  a   (reflexive) 

2. For all a, b  A, a  b, b  a, then a = b  (anti symmetry) 

3.  For all a, b, c  A, a  b and b  c, then a  c (transitivity) 

Two elements a and b in A are said to be comparable under  if either  

a  b or b  a; otherwise they are incomparable. If every pair of elements of A are comparable, 

then we say that the partially ordered set is totally ordered.  

1.2. Definition: An algebra ( , , ,A  
~( )  ) where A is a non-empty set with 1, ,  are binary 

operations and 
~( )   is a unary operation satisfying  

(a) 
~ ~ =        x x x A   

(b) ,      x x x x A            

(c) ,      ,x y y x x y A       

(d) 
~  ~ ~( )       ,x y x y x y A           

(e) ( ) ( ) ,     , ,x y z x y z x y z A         

(f) ( ) ( ) ( ),     , ,x y z x y x z x y z A           

(g) 
~(  ),     ,x y x x y x y A       is called a Pre A*-algebra. 

1.1. Example: 3 = {0, 1, 2} with operations  , ,  
~( )  defined below is a Pre A*-algebra. 

 

 

 

 

 

 

1.1. Note: The elements 0, 1, 2 in the above example satisfy the following laws: 

(a) 2~ = 2                (b) 1  x = x for all x  3               

(c) 0  x = x for all x  3     (d) 2  x = 2  x = 2 for all x  3. 

1.2. Example: 2 = {0, 1} with operations, (-) ~ defined below is a Pre A*-algebra. 

 0 1 2   0 1 2  x  x  

0 0 0 2  0 0 1 2  0 1 

1 0 1 2  1 1 1 2  1 0 

2 2 2 2  2 2 2 2  2 2 
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 0 1   0 1  x x~ 

0 0 0  0 0 1  0 1 

1 0 1  1 1 1  1 0 

1.2. Note :(i)    2, , , ( )    is a Boolean algebra. So every Boolean algebra is a Pre A* algebra. 

(ii)  The identities 1.2(a) and 1.2(d) imply that the varieties of Pre A*-algebras satisfies    all the 

dual statements of 1.2(b) to 1.2(g). 

1.3. Definition:  Let A be a Pre A*-algebra. An element x A is called a central element of A if  

 =1x x   and the set {x  A/  =1x x  } of all central elements of A is called the centre of A and 

it is denoted by B (A).  

1.1. Theorem: [Satyanarayana.A, (2012)]  Let A be a Pre A*-algebra with 1, then B (A) is a 

Boolean algebra with  the induced operations  ~(-) ,  ,   

1.1. Lemma: [Satyanarayana.A, (2012)] Every Pre A*-algebra with 1 satisfies the following laws   

     (a)   ~1 xxx     (b)  ~0 xxx   

1.2. Lemma: [Satyanarayana.A, (2012)] Every Pre A*-algebra with 1 satisfies the following 

laws. 

(a)  (  ) = (  ) x x x x x x x           

(b) (  ) y (x y) (x y)x x           

(c) ( ) ( ) (  y z)x y z x z x        

1. 4. Definition: Let 1( , , , ( ) )A      and 2( , , , ( ) )A      be a two Pre A*- algebras. A mapping 

1 2:f A A  is called a Pre A*-homomorphism if 

(i) ( ) ( ) ( )f a b f a f b      (ii) ( ) ( ) ( )f a b f a f b        (iii) (  ) ( ( )) f a f a   

The homomorphism 1 2:f A A  is onto, then f is called epimorphism.  

The homomorphism 1 2:f A A  is one-one then f is called monomorphism 

The homomorphism 1 2:f A A  is one-one and onto then f  is called an isomorphism, and 

1 2,A A  are isomorphic, denoted in symbol 1 2A A . 

2. PRE  A*- ALGEBRA  AS A POSET  WITH   RESPECT  TO  BINARY  OPERATION  

2. 1 Definition: Let A be a Pre A*-algebra. Define a relation  on A by x  y if and only if y  x 

= x  y = x. 

2. 1 Lemma: If A is a Pre A*-algebra, then (A, ) is a poset. 

Proof:  Since x  x = x, x  x for all x  A 

Therefore  is reflexive.   

Suppose that x, y, z  A, x  y and y  z. 

Then we have y  x = x  y = x and z  y = y  z = y. 

Now x = x  y = x  y  z = x  z.  x  z = z  x = x 

Therefore, x  z. This shows that  is transitive. 

Suppose that x, y  A, x  y and y  x  y  x = x  y = x and y  x = x  y = y.  
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This shows that x = y. Therefore  is anti-symmetric. Hence (A, ) is poset. 

2. 1 Note: If A is a Pre A*-algebra with 1, 0, 2 then x  1(x1 = 1x = x), for all x A and 2  x 

(x  2 = 2  x = 2). This shows that 1 is the greatest element and 2 is the least element of the 

poset. The Hasse diagram of the poset (A, ) is given by  

 

 

 

Diagram 2.1 

We have A  A = {a1 = (1,1),  a2 = (1,0),  a3 = (1,2),  a4 = (0,1),  a5 = (0,0),  

a6 = (0,2),  a7 = (2,1),  a8 = (2,0),  a9 = (2,2)} is a Pre A*-algebra under point wise operation and A 

 A is having four central elements and remaining are non central elements, among that a9 = (2,2) 

is satisfying the property that a9
~ = a9. The Hasse diagram is of the poset (A  A, ) given below 

 

 

 

 

                                                                 Diagram 2.2 

Observe that, x  a1, x  a1 = a1  x = x and a9  x(xa9 = a9  x = a9) for all x  A  A. This 

shows that a1 is the greatest element and a9 is the least element of A   A. 

We have 2  3 = {a1 = (1,1), a2 = (0,0), a3 = (1,0), a4 = (0,1), a5 = (2,2),  

a6 = (1,2)} is a Pre A*-algebra under point wise operation having four central elements, two non-

central elements and no element is satisfying the property that a~ = a. 

The Hasse diagram for (2  3, ) as given below 

 

 

 

 

 

 

 

Diagram 2.3 

1 

0 

2 

a1 

a2 

a3 

a4 

a5 

a6 

a7 

a8 
a9 

a1 

a4 a3 

a6 

 

a2 

a5 
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Observe that, x  a1, that is, xa1 = a1  x = x and a5  x (xa5 = a5  x = a5) for all x  2  3. 

This shows that a1 is the greatest element and a5 is the least element of 2  3. 

2. 1. Theorem: In the partially ordered set (A, ), for any x  A, supremum of {x, x~} = x  x~ 

and infimum {x, x~} = x  x~. 

Proof: We have (x  x~)x = x and x~(xx~) = x~ 

Therefore x  x  x~ and x~  x  x~ 

Hence x  x~ is an upper bound of {x,x~} 

Suppose n is an upper bound of {x, x~} 

That is, x  n, x~  n  n  x = x, and n  x~ = x~ 

Now n  (x  x= (n x)  (n x~) = x  x~ 

This shows that x x~  n  

Therefore x x~ is a least upper bound of {x, x~}  

This shows that supremum of {x, x~} = x  x~ 

Again we have (x  x~)  x = x x~ and (x x~) x~ = x x~ 

Therefore x  x~  x and x x~   x~ 

Hence x  x~ is a lower bound of {x, x~} 

Suppose m is a lower bound of {x, x~} 

That is, mx, mx~  mx=m, and mx~ = m 

Now m x x~) = (m x) x~ = m x~ = m 

This shows that m  x  x~ 

Therefore x  x~ is a greatest lower bound of {x, x~} 

This shows that infimum of {x, x~} = x  x~ 

2. 2. Theorem: In a poset (A, ) with 1, for any x, y A, Inf{x,y} = x y. 

Proof: We have (xy) x = x  y and (x y)  y = x  y 

Therefore x  y x and x  y  y. 

Hence x  y is a lower bound of {x, y} 

Suppose m is a lower bound of {x, y} 

That is, m  x, m  y  m x = m and m  y = m  

Now m  (x y) = (m  x)  y = m  y = m. 

This shows that m  x  y 

Therefore x y is a greatest lower bound of {x,y} 

This shows that infimum of {x, y} = x  y. 

In general for a Pre A*-algebra with 1, xy need not be the l.u.b of {x, y} in (A, ). For example 

2  x = 2  x = 2, x A is not a least upper bound. However we have the following theorem.  

2. 3. Theorem: In a poset (A, ) with 1, for any x, y B (A), sup{x, y} = x y. 

Proof: If x, y  B (A), then we have, x(xy) = x and y(xy) = y  

This shows that x  x y and y  x  y   

Hence x y is an upper bound of {x,y} 
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Suppose z is an upper bound of {x,y}, then z  x = x, z y = y 

Now z  (x y) = (z  x)  (z  y) = x  y 

Therefore, x  y  z. 

Hence sup {x, y} = x  y. 

2.4 Theorem: In the poset (A, ), if x,y B(A), then x  y  x x~. 

Proof: (x  x~)  (x y)  = {x  (x  y)}  {x~  (x y)} 

    = x (x~y)  

    = x  y 

Therefore x y  x x~ 

2.5. Theorem: In the poset (A, ), if x  y, then for any z A, 

(a) z  x  z  y 

(b) z  x  z  y 

Proof: If x  y, then x  y = x 

(a) (z  x)  (z  y) = {(z x) z} y = (z x) y = z  x. 

Therefore z  x  z  y 

(b) (z x)  (z  y) = z  (x  y) = z  x 

Therefore z  x  z  y 

Now we are giving the following equivalent conditions for x  y. 

2. 2. Lemma: In a Pre A*-algebra (i) x y  x  (x~  y) = (x~  y)  x = x 

(ii) x  y  y y~ x) = (y~  x) = (y~ x) y = x 

Proof: (i) If x  y   x  y = x 

    x (x~y) = (x~ y)  x = x  

(ii) If x  y  y  x = x  

 y  (y~  x) = (y~  x) y = x  

Now we prove modular type results in the following lemma.  

2.3 Lemma: In the poset (A, ), if x  y  x (y  z) = y  (x  z).  

Proof: Suppose x y then y  x = x  

Now y  (x  z) = (y  x)  (y  z) = x  (y  z) 

If x, y  B(A) then by theorem 2. 3, sup {x, y}= x y. In general x  y need not be an upper 

bound of {x,y} in poset (A, ). If x  y is an upper bound of {x,y} in poset (A, ), then A 

becomes Boolean algebra. Now we have the following theorem.  

2.6. Theorem: If A is a Pre A*-algebra and x (x y) = x for all x, y A then (A, ) is a lattice. 

Proof: By Theorem 2.2, we have every pair of elements have g.l.b and if  

x (x y) = x for all x, y A, then by theorem 2.3 we have every pair of elements have l.u.b. 

Hence (A, ) is a lattice.  

Now we present an equivalent condition for a Pre A*-algebra become   a Boolean algebra. 

2.7. Theorem: The following conditions are equivalent for any Pre A*-algebra (A,,, (-) ~). 

(1) A is a  Boolean  Algebra 
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(2) x  x y for all x, yA 

(3) y  x y for all x, yA 

(4) x y is an upper bound of {x, y} in (A,  ) for all x, yA 

(5) x y is an supremum of {x, y} in (A,  ) for all x, yA 

(6)  x x~ is the greatest element in (A,  ) for every xA 

Proof:  (1)  (2) Suppose A be a Boolean algebra 

Now    x  (x  y) = x (by absorption law) 

Hence  x  x y. 

(2)  (3) suppose x  x y then x  (x  y) =x 

Now y  (x  y) =y .Therefore y  x y. 

(3)  (4) Suppose that y  x y  y   (x y) =y 

Since y  x y then x y is upper bound of y 

Now x  (x  y) =x (by supposition) 

Therefore x  x y   x y is upper bound of x 

Hence x y is an upper bound of {x, y}. 

(4)  (5) suppose x y is an upper bound of {x, y} 

Suppose z is an upper bound of {x, y}, then x z, y z that is x z = x,     y z=y 

Now z   (x y) = (z x)  (z y) =x y 

Therefore x  y  z  . Hence sup{x, y} = x  y. 

 (5)  (6) suppose sup{x ,  y}= x  y then x,y ( )B A  

Now sup{x x~, y} = x x~ y = x x~  

  y  x x~
   

 Therefore  x x~ is the greatest element in (A,  ). 

(6)  (1) suppose x x~ is the greatest element in A then y  x x~   

  (x x~)   y=y 

Now y (x y) = [(x x~)   y]  (x y) = [(x x~)  x]  y    

= (x x~)  y = y          (by supposition) 

Therefore absorption law holds hence A is a Boolean algebra. 

2.8. Theorem:  Let A be a pre A*-algebra if x x~ is the least element in  

(A,  ) for every xA, then A is a Boolean algebra. 

Proof:  Suppose x x~ is the least element in (A,  ) then x x~ y  

   (x x~)  y = x x~ 

 Now x  (x  y) = [x (x x)]      (x  y) 

= x [( x x~) y]  
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= x  (x x~) (by supposition) 

= x                    

Therefore x  (x  y) = x, absorption law holds. 

Therefore A is a Boolean algebra. 

2.9. Theorem: Let A be a Pre A*-algebra and aA. Let 

aA = {xA / a x = x }.Then aA  is closed under the operations   and  . Also for any 

x aA define, 
ax = a  x~. Then ( aA ,  , , a ) is a Pre A*-algebra with 1(here a is itself is the 

identity for   in aA ; that is 1 in aA ). 

Proof: Let x , y  aA .Then a x = x and a y = y. 

Now a (x  y) = (a x)  y = x  y   x  y aA  

Also a (x  y) = (a x)  (a y) = x  y  x y aA  

Therefore aA is closed under the operation   and  . 

a
ax = a ( a  x~) = a  x~ =

ax 
ax  aA  

Thus aA is closed under a. 

Now for any x, y, z aA  

(1) xaa = (a  x~)a = a (a  x~)~ = a (a~  x) = a x = x  

(2) x x = (a x) (a x) = a x = x 

(3) x y = (a x)   (a y) =(a y)   (a x) = y x 

(4) (x y)a = a (x y) ~ = a (x ~ y ~) 

                                         = (a x ~)  (a y ~)  

                                         =xa yb 

(5) x (y z) = (a x) {(a y) (a z)}  

                      = a {x (y z)} 

                      = a {(x y) z} ( since x, y, zA) 

                      = (x y) z  

(6) x (y z) = (a x) {(a y)  (a z)} 

                      = {(a x) (a y)} {(a x) (a z)} 

                      = {a (x y)} {(a (x z)} 

                      = (x y) (x z) 

(7) x ( xa y) = x { (a  x~) y} 

                        = {x (a x~)} (x y) 

                        = (x  x~) (x y)  ( since a x = x) 



Representation of Pre A* - Algebra   by a Partially Order 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)            Page | 208 

                        = x ( x~ y) 

                        = x y   

Finally x aA implies that a x = x = x a. Thus ( aA ,  , ,a ) is a Pre A*-algebra with a as 

identity for  . 

2.10. Theorem: Let a, b be elements in a Pre A*-algebra A such that a b .Then the following 

hold. 

(1) a b = a 

(2) The map ,a b : bA 
aA defined by ,a b  (x) = a x for all x bA  is a homomorphism of 

Pre A*-algebras.  

(3) ,a b  (B( bA ))   B( aA ) 

(4)If a b c then ,a b  ,b c = ,a c  

(5) ,a a  is the identity map on aA  

Proof: Suppose that a b  

(1) We have a b  a b  = a 

(2) Let x, y  bA .Then ,a b  (x y) = a (x y) 

                                                        = (a x)  (a y) 

                                                        = ,a b  (x)  ,a b  (y) 

and ,a b  (x y) = a (x y) 

                            = (a x)   (a y) 

                            = ,a b  (x)  ,a b  (y) 

Also ,a b  (xb) = a  xb
 

                       = a (b  x~) 

                   = (a b)  x~ 

                   = a  x~ 

                   = a (a~  x~)    

                   = a (a  x) ~   

                   = (a  x)a   

                   = ( ,a b  (x))a   

Therefore ,a b  is a homomorphism of Pre A*-algebras.  

(3) Let xB( bA ) . 

Then x  xb =b (since b is identity in bA ) and therefore b = x (b x~) 
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Now b = b b = b (x (b x~)) 

                       = (b x)  (b x~) 

                       = b (x x~)  -------------------(i) 

  Now ,a b  (x) [ ,a b  (x)]a =  (a x) (a x)a   

                                          = (a x) [a (a x)~]   

                                          = (a x) [a (a~ x~)]  

                                          = a [x  (a~ x~)]    

                                          = a [ a~  (x x~)]    

                                          = a (x x~)  

                                          = (a b)   (x x~) 

                                          = a  [b   (x x~)] 

                                          = a  b    (by (i)) 

                                          = a, which is 1 in aA  

Therefore ,a b  (x)B( aA ) 

Thus ,a b  (B( bA ))   B( aA ) 

(4)Let a b c 

[ ,a b  ,b c ](x) = ,a b  [
,b c (x)] 

                         = ,a b  [b x] 

                         = a  b  x 

                         = a  x 

                         = ,a c  (x) 

Therefore ,a b  ,b c = ,a c  

(5) ,a a  (x) = a  x = x for all x aA  

Then ,a a  is identity map on aA . 

3. CONCLUSION  

This manuscript illustrates the nature of the Pre-A*-algebra like a partially ordered set. With 

respect to binary operation , defined a relation  on a Pre-A*-algebra and observed that such a 

Pre-A*-algebra as a partially ordered set with respect to the relation  and derived corresponding 

results. It has been observed a necessary condition for a Pre-A*-algebra to become a lattice with 

respect to binary operation . For any aA defined a set aA = {xA / a x = x} and 
ax = a  x~ 

, observed that ( aA ,  , , a ) is a Pre A*-algebra. Also by defining a mapping ,a b from 

bA to aA  by ,a b  (x) = a x for all x bA , confirmed a homomorphism of Pre A*-algebras. 
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