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Abstract: The  aim  of   the   present   investigation   is  to  examine   the   run-up   flow   of  a  viscous 

incompressible  fluid  through  a  pipe  whose  cross-section  is  rectangular. The governing equation of the 

motion under the boundary conditions is solved numerically, by using ADI method.  An interesting 

observation of this investigation is that at large Reynold numbers the velocity distribution along the 

symmetrical line y = 0 takes the form of a damping wave. At the initial stages the velocity at any nodal 

point decreases with time is an uneven fashion. The run-up flow also introduces local maxima and minima 

in the region.  At small Reynold numbers the  velocity distribution  in the  region x =  0.2  to x =  0.8  is 

almost  constant  for large ‘t’. 
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1. INTRODUCTION 

The problem of Run-up flow of viscous incompressible fluid between rigid boundaries is 

attracting the attention of researchers due to its importance in several branches of technology. 

Kazakia and Rivilin [I] and Rivlin [2] have investigated to Run-up flow of viscoelastic fluids 

between parallel plates and circular geometries. N.CH. Pattabhi Rmacharyulu K.Appala Raju [3] 

studied Run-up flow in a generalized porous medium.  

The  aim  of  the  present   investigation   is  to  examine   the  Run-up   flow  of  a  viscous 

incompressible fluid through a pipe whose cross-section  is rectangular. Initially the flow is due to 

constant pressure gradient, when steady state is reached the pressure is suddenly with drawn 

resulting in Run-up flow, the effect of the Reynold number on the flow field is studied. Unlike 

closed  form  solutions  in  infinite  series,  this  investigation  brings  out  graphically velocity 

distributions at different times for different Reynold numbers. 

2. MATHEMATICAL FORMULATION  

Consider the flow of a Newtonian viscous incompressible fluid through a pipe whose cross- 

section. The centre of pipe is taken as origin and a line parallel to length of pipe through origin is 

taken as Z-axis.  X and Y axis are parallel to sides. The flow is assumed to be symmetrical about 

X and Y axis. Since the flow is symmetrical the velocity distribution in the first quadrant is 

investigated. The governing equations are non-dimensionlised and 100 gird points are generated 

by taking the grid length of 0.1 on either direction. The initial condition which corresponds to 

fully developed flow under constant pressure gradient is given by  
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Non-dimensionlising (1) using (2), the dimensionless initial condition for velocity up to six digits 

approximation is given by 
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The governing equations of Run-up flow are 
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Non -dimensionlising the above equation by 
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The equation (5) has to be solved subject to initial conditions, at t = 0,  ww   and the boundary 

condition w and the boundary condition w (σ) = 0 for all t, where σ is a boundary of the pipe. ADI 

method is applied to the equation (5) giving the following finite difference equations 

Ui, j, n+1 – Ui, j, n = k [Ui-1, j, n+1 - 2 Ui, j, n + Ui, j, n+1, Ui, j-1, n – 2Ui, j, n + Ui, j+1, n]                         (6) 

kUi-1, j, n+1 – (1+2k)Ui, j, n+1  + kUi+1, j, n+1 = -k Ui, j-1, n (2k-1)Ui, j, n – kUi, j+1, n                         (7) 

Substituting I= 0 to 9 in equation (7) we get the following linear equations AU (I, j, n+1) = B 

Where A= 
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I= I    to 9 

B[i] = -K U( i-1, j-1) + (2K-1) U(i-1, j) – KU(i-1, j+1) 

B[10] = -K U( 9, j-1) + (2K-1) U( 9, j) – KU( 9, j+1)  - K U( 10, j)   

K U( i, j-1, n+2) - (1 + 2K) U(i, j, n+2) + KU(i, j+1, n+2) 

 = - K U( i-1, j, n+1) + (2K-1) U(i, j, n+1) – KU(i+1, j, n+1)             (8) 
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Substituting = 0 to 9 in equation (8) we get the following linear equations. 

 AI U( I, j, n+2) = B’ 

Where A I= 
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B’[i] = -K U( i-1, j-1) + (2K-1) U(i, j-1) – KU(i+1, j-1) 

B’[9] = -K U( i-1, 8) + (2K-1) U( i, 8) – KU( i+1, 8)  - K U( i-1, 9)   

3. RESULTS AND DISCUSSION 

Equations  (7)  and  (8)  are  solved  numerically  by giving  different  values for  K  which  is 

influenced by Reynold number at different time steps. 

Fig (1) shows distribution of velocity of a fully developed flow (K = 0) along lines x = 0, x = 

0.3h
2
, x = 0.6h and x = 0.8h. It is evident from the graph that the velocity decreases as we move 

away from the symmetrical line towards the boundary. Hence the maximum velocity is obtained 

at the centre of the cross-section. Fig (2) shows variation of velocity at the centre for different 

Reynold numbers and time steps. The variation of velocity is observed to take a damping wave 

form, for large Reynold numbers. The variations are almost smooth for small Reynold numbers.  

Fig (3) shows the variations of velocity at time N = I    on the line y = 0 for different Reynold 

numbers. There are large variations in the region x = 0, to x = 0.1, where the fluid particle attains 

local minimum velocity at x = 0.1 and a maximum at x = 0.2. The flow is almost smooth in the 

region x = 0.3 to x = 0.7. The velocity is found to decrease with the increase of Reynold number. 

Fig (4) and (5) show that with lapse of time i.e. N = 6 and N = 8 and K = 0.2 the velocity 

gradually decreases from the centre and attains minimum at x = 0.1 and increases from there and 

velocity profile is almost parabolic obtaining maximum round about at x = 0.4. The same 

phenomena is observed when K = 0.3 (figures 6 and 7).  Fig (6) and (7) show that at the beginning 

stages of Run-up flow the velocity distributions is non-symmetrical.  Fig (8) and Fig  (9)  show  

that  when  Reynold  number  is  small  the  velocity  distribution   is  almost symmetrical about x 

= 0.1 and x = 0.4. Fig (10) and Fig (11) show the decrease of velocity with time for a given 

Reynold number. It can be observed that the fall in velocity in the region from x = 0.2 to x = 0.7 is 

very large while in other region it is gradual. An interesting observation of this investigation is 

that at large Reynold numbers the velocity distribution along the symmetrical line y = 0 takes 

form of a damping wave. At the initial stages the velocity at any nodal point decreases with time 

in an uneven fashion. The Run-up flow also introduces local maxima and minima in the region. 

At small Reynold numbers the velocity distribution in the region x = 0.2 to x = 0.8 is almost 

constant for large t.  

4. CONCLUSIONS  

The maximum velocity is obtained at the centre of the cross-section. For large Reynold numbers, 

the variation of velocity is takes a damping wave form. At the initial stages the velocity at any 

nodal point decreases with time in an uneven fashion. The Run-up flow introduces local maxima 

and minima in the region. At small Reynold numbers the velocity distribution in the region          

x = 0.2 to x = 0.8 is almost constant for large t. Velocity profile is almost parabolic obtaining 

maximum round about the centre. 
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                               Fig.1                 Fig.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                Fig.3                              Fig.4 

 

 

 

 

 

 

 

 

 

 

 

 

                               Fig.5                 Fig.6 
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                                Fig.7                                  Fig.8 

 

  

 

 

 

 

 

 

 

 

 

                             Fig.9                Fig.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             Fig.11                Fig.12 
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