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Abstract: In the present paper, we obtain some generating functions for the Laguerre  polynomials of two 

variable (x,y)nL  with respect to y , by means of group Theoretical methods. The process involves the 

construction of a three-dimensional Lie algebra isomorphic to special linear algebra (2)SL  with help of 

Weisner's method by given suitable interpretations to the index n  of the polynomials (x,y)nL . 
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1. INTRODUCTION 

Dattoli and Torre [4,5] introduced and discussed a theory of two variables Laguerre polynomials. 

The reason of interest for this family of Laguerre polynomials is due to their intrinsic 
mathematical importance and to the fact that these polynomials differential equations which often 

appear in the treatment of radiation physics problems such as the electromagnetic wave 

propagation and quantum beam life-time in storage rings, see [13]. 

The two variables Laguerre polynomials (TVLP) (x,y)nL  are specified by the series [2] 
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and the generating function for (x,y)nL  is given by [4] 
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The TVLP (x,y)nL  are linked to the polynomials (x)nL [1] by the relation [5, p.22 Eq. 10b]  
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These polynomials satisfy the following differential and pure recurrence relations: 
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Substituting 2 (x,y)nL  from (1.7) in (1.5) we obtain the following differential equation satisfied 

y)x,(nL  with respect to y , we get the differential equation satisfied by y)x,(nL  is  
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In the present paper we utilize Weisners's [12] group-theoretic method of obtaining generating 

relations in the case of TVLP (x,y)nL  with respect to y  by given suitable interpretation to the 

index n . 

It's remarked that another, more general approach to obtain Laguerre polynomials of many 
variables (and other polynomials as well, such as Hermite, Charlier) using a chaos decomposition 

on spaces of Fock type can be found in [6] and the reference there in. However, the direct and 

appropriate for obtaining generating relations.  

The process involves the construction of a three-dimensional Lie algebra isomporphic to the 

special linear algebra (2)sl  , lie algebra of (2)SL ( [8], p.7).The 22 complex special linear 

group (2)SL  is the abstract matrix group of all 22 non-singular matrices, 
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Such that ,1det g )2(SL  is a three dimensional local Lie group. The elements 
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satisfying the commutation relations  

3 3 3 3[ , ] , [ , ] , [ , ] 2J J J J J J J J J         

from a basis for (2)sl . 

2. GROUP- THEORETIC METHOD 

By replacing d dx  by  x   and n  by z
z




 in Equation (1.8) we construct a partial differential 

equation: 
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Thus, ( , ; ) (x,y) n
nf x y z L z  is a solution of equation (2.1) since (x,y)nL is a solution of  

equation (1.8). 

First we consider the following first –order linear partial differential operators  
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such that 
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These operators satisfy the commutation relations 

3 3 3[ , ] , [ , ] , [ , ] 2J J J J J J J J J           (2.3) 

where [ , ]A B AB BA  . 

The above commutation relation show that the set of J-operators 3{ , , }J J J   generates a three –

dimensional Lie algebra isomorphic to (2)sl , the Lie Algebra of (2)SL . 

In terms of the J-operators, we introduce the Casimir operator [8, p.32] 
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We can verify that C  commutes with 3 ,J J  and J  , that is 

3[ , ] [ , ] [ , ] 0C J C J C J     (2.5) 

Equation (2.4) enables us to write Equation (2.1) as  

( , ; ) ( 1) ( , ; )Cf x y z f x y z   (2.6) 

Now we proceed the commute the multiplier representation ),;,]()([ zyxfgT ),2(SLg  

induced by the J-operators (2.2). 

A simple computation using [11. P.320, Theorem 7]  and (2.2) gives 
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Defined for ' , 'b c and ' sufficiently small. If (2)g SL  and 0d  , it is a straightforward 
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3. GENERATING RELATIONS 

To accomplish our task of obtaining generating relations, we search for the function ( , , )f x y z  

which satisfies Equation (2.6). Consider the case when ( , , )f x y z  is a common eigen function of 

C  and 3J , that is, let ( , , )f x y z  be a solution of the simultaneous equations 
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Equation (3.2) yields ( , ; ) ( , ) ,n
nf x y z L x y z  so that we have  
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satisfying the relation 
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To determine ( )knA g , we set 0x   and 1y   in equation (3.4), and thus we have  
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Substituting (3.5) into equation (3.4) and simplifying, we obtain the generating relation 
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We consider some special cases of (3.6). 

CASE I: 
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CASE II: 

Taking 1, 0a b d c     and replacing z  by t  in (3.6), we obtain  

 
1

0

( 1)
1 exp , ( , ) ,

1 2 1 1 !

n
n

n kk
n n k

k

nt xt y
yt L x L x y t

yt yt yt k

 




       
      

       
  

 

(3.8) 

CASE III: 

Taking 1a d   and 0bc   without any loss of generality we can choose 1bz t   and 

2c z t   in (3.6), we obtain  
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