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Abstract:  The present paper is devoted to an analytical investigation of a two species comensal - host 

model. Both the commensal and host with limited resources and are harvested (immigration) at a constant 
rate. The model is characterized by couple of first order non-linear ordinary differential equations. The 

only one equilibrium point for the model is identified and stability criteria are discussed. Also global 

stability is discussed by constructing suitable Liapunov’s function. 
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1. INTRODUCTION 

Lotka [12] and Volterra [21] initiated mathematical studies of eco-systems in general, more 

particularly problems related to growth and decay of fisheries. The ecological symbiosis of living 
species can be broadly classified as Prey- Predation, Competition, Mutualism, Commensalism, 

Ammensalism, and Mutation and so on. Meyer [13], Kapoor [6,7] and several others dealt at 

length in their treatises ,the general concepts of mathematical modeling of ecosystems. The 
stability of biological communities in nature was discussed by Svirezher and D.O.Logofet [19]. 

Competition between two and three species with limited and unlimited resources was studied 

earlier  by Srinivas [20] .This was followed by Lakshminarayan and PattabhiRamacharyulu [8, 9, 
10] with their investigations on Prey-Predator ecological models with partial cover for the prey 

and alternate food for the predator and also models with harvesting. A Prey-Predator model with a 

variable cover for the prey and alternate food for the predator was studied by Lakshminarayan and 

Apparao[11].Later PattabhiRamacharyulu et.al [2], Archanareddy [3] and Rama sarma [4,5] 
investigated the stability of species in competition. While mutualism was considered by Ravindra 

Reddy [17]. Following this PattabhiRmacharyulu, Phanikumar, et.al investigating the stability of 

species in commensalism [14,15,16,18] while ammensalism was considered by 
PattabhiRamacharyulu N.Ch,and K.V.L.N Aacharyulu  [1]. 
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This paper deals with an analytical investigation of a two species comensal - host model. Both the 

commensal and host are with limited resources and are harvested (immigration) at a constant rate. 

The model is characterized by couple of first order non-linear ordinary differential equations. The 
only equilibrium point (state) for the model is identified based on model equations. It is noticed 

that the equilibrium state is co-existent and criteria for the asymptotic stability of the state have 

been derived and observed that it is stable. 

2. NOTATION ADOPTED 

N1 and N2 are the populations of the commensal and host species with natural growth rates a1 and 

a2 respectively. 

a11 is rate of decrease of the commensal due to insufficient food. 

a12 is rate of increase of the commensal due to inhibition by the host. 

a22 is rate of decrease of the host due to insufficient food. 

h1 = a11 H1 is rate of harvest of the commensal 

h2 = a22 H2 is rate of harvest of the host. 

Ki = 
ai

aii

are the carrying capacities of Ni, i = 1, 2 

C = 
12 11

a a is the coefficient of commensalism. 

*t  is the dominance reversal time 

The state variables N1 and N2 as well as the model parameters a1, a2, a11, a22, K1, K2, C, h1, h2 are 

assumed to be non-negative constants. 

3. BASIC EQUATIONS 

A commensal –host model with limited resources and with constant harvesting(immigration) rates 
is characterized by the following pair of coupled non-linear ordinary differential equations. 

(I) Equation for the growth rate of commensal species (S1) 

 1
dN

dt
 = a11 ( K1 N1– N1

2
  + C N1 N2 + H1 )              (1) 

(II) Equation for the growth rate of host species (S2) 

2
dN

dt
 = a22 ( K2 N2 – N2

2
 + H2 )                 (2) 

4. EQUILIBRIUM STATES 

The system under investigation has only one equilibrium state given by 
dNi

dt
=0,i=1,2. 

Co-existence state E1: 

 E1: 
2 1 2

;1 21 2 2
2 22

1 2
2

H H H
N K C K N K

K KH
K C K

K

     

 

  
  

   
 
 

                         (3) 

5. STABILITY OF EQULIBRIUM STATES  

Let N = (N1, N2) = N  + U=  ,1 1 2 2N u N u                (4) 
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where U =  ,1 2u u  is a small perturbation over the equilibrium state:  ,1 2N N N .Substituting (3) 

in (1) and (2) and neglecting higher powers of the perturbations u1,u2 ,we get  

dU
AU

dt
                   (5) 

where 

 
( 2 )

11 1 1 2 11 1

0 ( 2 )
22 2 2

a K N CN a CN

a K N
A

 



 
  
 

            (6) 

The characteristic equation for the system is  

det [A –  I] = 0                   (7) 

The equilibrium state is stable only when the roots of the equation (7) are negative, in case they 
are real or have negative real parts, in case they are complex. 

5.1 Stability of the Equilibrium State E1: 

 
2 1 2;1 21 2 2
2 22

1 2
2

H H H
N K C K N K

K KH
K C K

K

     

 

  
  

         
 

 

From (6), the corresponding linearized perturbed equations are 

 
 

2
1 2 12

211 1 11 1 21 122 2 221 2 1 22 22

2 20 222 2

H H HH
a K C K Ca K C Ku uKd H K HK C K

K C KKu udt K

H
a K

K

 
 

   
 
 

 
 
 

      

   

 

  
   

     
                                   

 
  

 

            

                                (8) 

The characteristic equation for the above system is 

The 22 2 1 2
22 2 11 1 2

2 22
1 2

2

H H H
a K a K C K

K KH
K C K

K

      

 

  
  

      
           

   
    

  

2
2 1 2 0211 22 2 1 222 21 2

H H H
a a K K C K

KHK
K C K

K

 
     

  
 

     

 

 
   
        

 

          (9) 

The characteristic roots of (9) are 

2
1 2 2;2 21 11 1 2 222 22
21 2

H H H
a K C K a K

K KH
K C K

K

 
   
           

  
 

       

 

 
  
  

  
 

 

both the roots 
1
  and 

2
  are negative. Hence the equilibrium State E1 is stable. 

The corresponding linearized perturbed equations are 

By solving the system of equations in (8) we get 
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1 2
11 22 2

1 2 2
1 10

H H
a t a N t

K C N K
u u M e Me

  


  

   
   
   
    

 
          (10) 

where  

11 20 1

1 2
11 1 22 2

21 2

Ca u N
M

H H
a N a N

KK C N



  


   
   

  
  

  

2
22 2

2
2 20

H
a N t

K
u u e

 
 
 
 

 

                            (11) 

The solution curves in (10) and (11) are illustrated as follows: 

There arise the following three cases. 

Case A: when u10=M     Case B: when u10 > M and 

Case C: when u10 < M 

The solution cases in these three cases are illustrated below. 

Case A: when u10 = M, equations (10) and (11) become 

   

2
22 2

2
1 10

H
a N t

K
u u e

 
 
 
 

 

                           (12) 

2
22 2

2
2 20

H
a N t

K
u u e

 
 
 
 

 

                                       (13) 

 

CaseA.1: When u10 > u20 

  

 

 

 

 

          Fig. 1 

 

The initial strength of the commensal is greater than the host. In this case the commensal 

outnumbers the host. It is evident that both the species converge to the equilibrium point, as 

shown in Fig 1. 
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u10 
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u1 

u2 
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Case A.2: When u10 < u20 

 

 

 

 

 

             Fig. 2 

 

Case B: When u10 > M  

Case B.1: When u10 > u20 

 

 

 

 

 

          Fig. 3 

Case B.2: When u10 < u20 

 

 

 

 

 

          Fig.4 

Case C: When u10 < M 

Case C.1: When u10 > u20 

 

 

 

 

 

Fig .5 

 

 

 

t 

u20 

u10 

u 

0 

u1 

u2 

t 

u20 

u10 

u 

0 

u1 

u2 

t* 

t 

u20 

u10 

u 

0 

u1 
u2 

u10 

u20 

u 

u2 

u1 

t 0 

The initial strength of the host is greater than the 
commensal. In this case the host continues to 

outnumber the commensal. It is evident that both the 

species converge to the equilibrium point as shown in 
Fig .2. 

 

The initial strength of the host is greater than that of the 

commensal i.e., u20>u10. In this case the host dominates 

the commensal as shown in Fig.3. 

 

The initial strength of the commensal is greater than that 
of the host i.e., u10<u20. In this case the commensal 

dominates the host till the time  

 
1 10log

201 2
11 1 22 2

2 21

*
u M

u MH H
a N a N

KK C N

t t



  



 
   

      
   

  
  

  

This is the dominance reversal time in this case. This is 

shown in Fig .4. 

The initial strength of the commensal is greater than that 

of the host i.e., 

u10 > u20. In this case the commensal dominates the host 

as shown in Fig.5. 
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Case C.2: When u10 < u20 

 

 

 

 

 

Fig.6. 

 

5.1. (a) Trajectories of perturbed species 

   

 

 

 

 

    

 Fig 7 

 

 

 

6.  LIAPUNOV’S FUNCTION FOR GLOBAL STABILITY 

In section 5.1 we have discussed the local stability of the state of co-existence. We now examine 

the global stability of the dynamical system (1) and (2).We have already noted that this system 

has a unique, stable non-trivial co-existent equilibrium state at  

2 1 2;1 21 2 2
2 22

1 2
2

H H H
N K C K N K

K KH
K C K

K

     

 

  
  

         
 

 

Basic Equations: 

21
1 1 11 1 12 1 2 11 1

dN
a N a N a N N a H

dt
                                          (15) 

22
2 2 22 2 22 2

dN
a N a N a H

dt
                         (16) 

The lineraized basic equations are 

1 1
11 1 1 11 1 2

1 2

du H
a N u Ca N u

dt K C N
   



 
 
 

            (17) 

t 

u10 

u20 

u 

0 

u2 

u1 

t* 

The initial strength of the host is greater than that of 

the commensal i.e. u20>u10. In this case the host 

dominates the commensal till the time  

10

201 2
11 1 22 2

2 21

1
* log

u M
t t

u MH H
a N a N

KK CN

 
   

     
     

   

  

after which the commensal dominates. The 

dominance reversal time t   is shown in Fig.6. 

2

20

u

u

 

1

10

u

u

 0 

1   

 

Eliminating’t’ between the equations (10) and 
(11)  

we obtain 1 2 21

10 10 20 10 20

u u uM M

u u u u u



  
    
    
    
    

        

where  
1

11 1
1 2

2
22 2

2

H
a N

K C N

H
a N

K










 
 
 
 

 
  
                          

(14)

 

and these curves are seen in Fig .7 represents the 

stability of the equilibrium point. 

 

1   

1   



N. Phani Kumar et al. 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)               Page | 60    
 
 

2 2
22 2 2

2

du H
a N u

dt K
  

 
 
 

              (18) 

The characteristic equation is 

1 2 011 1 22 2
1 2 2

H H
a N a N

K C N K
     



     
     

     
 

i.e.,
2 2 1 1 2 02 1 1 222 11 22 11

2 1 2 1 2 2

H H H H
a N a N a a N N

K K C N K C N K
        

 

       
       

       
 

This is in the form of   
2

0p q     

 where  p= 2 1
2 122 11

2 1 2

H H
a N a N

K K C N
  



   
   
   

>0           (19) 

q = 1 2
1 211 22

1 2 2

H H
a a N N

K C N K
 



  
  
  

>0            (20) 

Therefore the conditions for Liapunov’s function are satisfied. 

Now define 

E (u1, u2) = ½ (au1
2
 + 2b u1u2+cu2

2
)             (21) 

Where    

2

2 2 2 1
2 2 122 11 22

2 2 1 2

H H H
a N a a N N

K K K C N
a

D

   




     
     

                      (22) 

2
1 211 22

2

H
Ca a N N

K
b

D





 
 
 

              (23) 

2
22 2 21 2 1

1 2 111 11 1 11 22
1 2 2 1 2

H H H
a N C a N a a N N

K C N K K C N
c

D

    
 



     
     

                                   (24) 

2 1 1 2
2 1 1 222 11 22 11

2 1 2 1 2 2

H H H H
D pq a N a N a a N N

K K C N K C N K
      

 

         
         

         
                        (25) 

From (19) and (20) it is clear that D > 0 and a > 0. 

Also, 

D
2
 (ac-b

2
) = 
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2

2 2 2 1
2 2 122 11 22

2 2 1 2

2
22 2 21 2 1

1 2 111 11 1 11 22
2 1 2 2 1 2

2

2
211 22 1

2

H H H
a N a a N N

K K K C N

D

H H H
a N C a N a a N N

K C N K K C N
D

D

H
Ca a N N

K

D

   


    
 





     
      
      
 
 
 
 

     
     
     
 
 
 
 

  
  
  

 
 
 








 
 
 
 


 
 
 
 
 
 
 
 
 
 

 

              D
2 
(ac – b

2
) > 0        

    b
2
 – ac< 0                            (26) 

The function E (u1, u2) at (21) is positive definite. 

Further  

1 2

1 2

du duE E

u dt u dt

 


 
=

   1 2
1 2 11 1 1 11 1 2 1 2 22 2 2

1 2 2

H H
au bu a N u Ca N u bu cu a N u

K C N K
       



      
      

      
 

=
21 1 2

11 1 1 11 1 11 1 22 2 1 2
1 2 1 2 2

H H H
a a N u a Ca N ba N ba N u u

K C N K C N K
      

 

      
      

      
 

                           
1 2

22
11 22 2

2

H
bCa ca u

K
N N  

  
  

  
           (27) 

Substituting the values of a, b and c from (22), (23) and (24) in (27) we get 

1 2

1 2

du duE E

u dt u dt

 


 
=

1 2 2 1
1 2 2 111 22 22 11

2 21 2 2 1 2
1

H H H H
a a N N a N a N

K C N K K K C N
u

D

     
 

 

        
        

        
 
 
 
 

1 2 2 1
1 2 2 111 22 22 11

2 21 2 2 1 2
2

H H H H
a a N N a N a N

K C N K K K C N
u

D

    
 

        
        

        
 
 
 
 

 

= 
2 2

1 2

D D
u u

D D
 
   
      

               (28) 

=   2 2
1 2u u                               (29) 
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1 2

1 2

du duE E

u dt u dt

 
 
 

 =  2 2

1 2u u   

which is clearly negative definite 

So, E ( u1, u2) is a Liapunov function for the Linear system.  

Next we prove that E (u1, u2) is also a Liapunov function for the non-linear system  

If F and G are two functions in N1 and N2 defined by 

F (N1, N2) =
2

1 1 11 1 12 1 2 11 1
a N a N a N N a H               (30) 

G (N1, N2) =
2

2 2 22 2 22 2
a N a N a H               (31) 

Now we have to show that 

1 2

E E
F G

u u

 


 
 is negative definite 

By putting N1 = 1N  + u1 and N2 = 2N  + u2 in (30) and (31) we get 

1
du

dt
  = a11( 1N +u1) – a11 ( 1N +u1)

2
 + a12 ( 1N +u1) ( 2N +u2) + a11 H1 

 = 1 ( , )
11 1 1 11 1 2 1 2

21

H
a N u Ca N u f u u

K CN
   



 
 
  

 

Where f (u1, u2) = - a11 u1
2
 + a12 u1 u2 

F (u1, u2) = 1
du

dt
 =  1 ( , )1 111 1 11 2 1 2

1 2

H
a N u Ca N u f u u

K CN
   



 
 
  

        (32) 

similarly 

22 ( ) ( )2 22 2 22 2 22 2

du
a N u a N u a u

dt
      

= 2 ( , )222 2 1 2
2

H
a N u g u u

K
  

 
 
 
 

 

where g (u1, u2) = - a22 u22 

G (u1, u2) =  2 2 ( , )222 2 1 2
2

du H
a N u g u u

dt K
   

 
 
 
 

           (33) 

From (21) 
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1

E

u




= au1 +bu2                (34) 

 

2

E

u




= bu1 + cu2                (35) 

Now 1( ) ( , )1 11 2 11 1 11 2 1 2
1 2 1 2

HE E
F G au bu a N u Ca N u f u u

u u K CN

 
      

  

   
  
    

 

   + 2( ) ( , )21 2 22 2 1 2
2

H
bu cu a N u g u u

K
   

   
   

   

 

= 1 2( ) ( )1 1 21 2 11 1 11 2 1 2 22 2
21 2

H H
au bu a N u Ca N u bu cu a N u

KK CN
        



     
      

         

 

     ( ) ( , )
1 2 1 2

au bu f u u + ( ) ( , )
1 2 1 2

bu cu g u u         (36) 

2 2
( ) ( ) ( , ) ( ) ( , )

1 2 1 2 1 2 1 2 1 2
2 1

E E
F G u u au bu f u u bu cu g u u

du du

 
                (37) 

By introducing polar coordinates (37) becomes 

2 1

E E
F G

du du

 
 

2
[( cos sin ) ( , ) ( cos sin ) ( , )

1 2 1 2
r r a b f u u b c g u u               (38) 

Let us denote the largest of the numbers | a|, |b|, |c| by K.  

Our assumptions imply that | f (u1, u2)| < 
6

r

K
 and | g (u1, u2)| <

6

r

K
, for all sufficiently small r > 0. 

So 

1

E

u




F +  

2

E

u




 G

2
42

6

Kr
r

K
    =  

2
0

3

r
             (39) 

Thus E (u1, u2) is a positive definite function with the property that  

1 2

E E
F G

u u

 


 
   is negative definite.             (40) 

 The equilibrium state E1 is asymptotically stable. 
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