
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

August 2015, PP 25-33

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

www.arcjournals.org

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 25

Cloud, Cluster & Grid Computing

Prof. Pradeep Kumar Shriwas

H.O.D.– Computer Science

Shri Agrasen Girls College, Korba, Chhattisgarh(India)

shriwasji.ps@gmail.com, Mailme_pradeep1012@rediffmail.com

Abstract: Cloud computing is really changing the way of computation. Many computer resources such as

hardware and software are collected into the resource pool which can be assessed by the users via the internet

through web browsers or light weight desktops or mobile devices. It is not a very new concept; it is related to

grid computing paradigm, and utility computing as well as cluster computing. All these computing viz. Grid,

cluster and utility computing, have actually contributed in the development of cloud computing. In this paper,

we are going to compare all the technologies which leads to the emergence of Cloud computing.

Keywords: cluster computing; grid computing; cloud computing; resource balancing;

1. INTRODUCTION

Cloud computing is the new computing paradigm which provides large pool of dynamical scalable

and virtual resources as a service on demand. The main principle behind cloud computing model is to

offer computing, storage, and software as a service or as a utility. We just need internet to use these

utilities. Buyya et al. (2009) have defined it as follows: ―Cloud is a parallel and distributed computing

system consisting of a collection of inter-connected and virtualized computers that are dynamically

provisioned and presented as one or more agreements (SLA) established through negotiation unified

computing resources based on service-level between the service provider and consumers.‖

The terms "grid computing" and "cluster computing" have been used almost interchangeably to

describe networked computers that run distributed applications and share resources. They have been

used to describe such a diverse set of distributed computing solutions that their meanings have

become ambiguous. Both technologies improve application performance by executing parallelizable

computations simultaneously on different machines, and both technologies enable the shared use of

distributed resources.

However, cluster and grid computing represent different approaches to solving performance

problems; although their technologies and infrastructure differ, their features and benefits complement

each other. A cluster and a grid can run on the same network at the same time, and a cluster can even

contribute resources to a grid.

Both of these forms of distributed computing have their roots in the UNIX operating system.

However, as operating systems and networks have evolved, more operating systems have been

adapted for use in both clusters and grids. Recent software releases have greatly improved both cluster

and grid computing on the Microsoft® Windows® operating systems.

This document defines grid computing and cluster computing from the perspective of the Windows

operating systems and development environments. After reading this document you will have a clear

understanding of the Windows cluster computing and grid computing options, and you will

understand how the two technologies complement each other.

2. WHAT’S THE DIFFERENCE?

The computers (or "nodes") on a cluster are networked in a tightly-coupled fashion--they are all on the

same subnet of the same domain, often networked with very high bandwidth connections. The nodes

are homogeneous; they all use the same hardware, run the same software, and are generally

configured identically. Each node in a cluster is a dedicated resource--generally only the cluster

applications run on a cluster node. One advantage available to clusters is the Message Passing

Interface (MPI) which is a programming interface that allows the distributed application instances to

communicate with each other and share information. Dedicated hardware, high-speed interconnects,

mailto:shriwasji.ps@gmail.com

Prof. Pradeep Kumar Shriwas

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 26

and MPI provide clusters with the ability to work efficiently on ―fine-grained‖ parallel problems,

including problems with short tasks, some of which may depend on the results of previous tasks.

In contrast, the nodes on a grid can be loosely-coupled; they may exist across domains or subnets. The

nodes can be heterogeneous; they can include diverse hardware and software configurations. A grid is

a dynamic system that can accommodate nodes coming in and dropping out over time. This ability to

grow and shrink at need contributes to a grid’s ability to scale applications easily. Grids typically do

not require high-performance interconnects; rather, they usually are configured to work with existing

network connections. As a result, grids are better suited to relatively ―coarse-grained‖ parallel

problems, including problems composed primarily of independent tasks. There is no dominant

programming paradigm in grid computing today, and a key challenge to increasing the acceptance of

grid computing is creating grid-enabled applications with familiar programming models. Digipede’s

object-oriented programming for grid (OOP-G) is one such model.

Grids can incorporate clusters. Often the best way to make use of all available resources is to manage

the cluster resources as part of a larger grid, assigning jobs and tasks to the resources best suited to

those jobs and tasks. For example, jobs requiring MPI would be assigned exclusively to the cluster,

while loosely-coupled jobs could be assigned to all grid nodes, including those in the cluster (when

available). Indeed, cluster compute nodes make excellent grid nodes, and many grids are composed

exclusively of dedicated servers.

 Windows Compute Cluster Digipede Network

 Server 2003

Operating system Homogeneous - Windows Heterogeneous - Microsoft

 Server 2003 64-bit Windows Compute Cluster

 Server 2003, Windows 2000

 SP4, Server 2000 SP4, XP SP2,

 Server 2003

Supported programming C, C++, Fortran77, Any language that supports

languages Fortran90, for MS MPI; any .NET 1.1, .NET 2.0, or COM

 language for non-MPI

Development tools Visual Studio 2005 Visual Studio .NET, Visual

 Professional and Visual Studio 2005, any IDE that

 Studio 2005 Team supports .NET or COM

 interfaces

MPI Yes No

.NET API for distributed No Yes (1.1 and 2.0)

applications

Distributed applications Executables and scripts .NET objects, COM Servers,

 executables, and scripts

CPU supported 64-bit only 32-bit and 64-bit

Task execution Tightly coupled or loosely Loosely coupled

 Coupled

File distribution model Staged by user, usually via Automatically staged by the

 Scripts Digipede Network

Compute nodes Dedicated Dedicated or shared

Scheduling model Job Scheduler on head node Agent driven (pull model)

 (push model)

Cloud, Cluster & Grid Computing

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 27

Both systems use similar terminology to define submitted requests: A job defines the work submitted

to the system which includes the required resources and the tasks to execute. A task is an individual

unit of work that can be executed concurrently with other tasks.

3. CLUSTER COMPUTING ON WINDOWS

Cluster computing on Windows is provided by Windows Compute Cluster Server 2003 (CCS) from

Microsoft. CCS is a 64-bit version of Windows Server 2003 operating system packaged with various

software components that greatly eases the management of traditional cluster computing. With a

dramatically simplified cluster deployment and management experience, CCS removes many of the

obstacles imposed by other solutions. CCS enables users to integrate with existing Windows

infrastructure, including Active Directory and SQL Server.

CCS supports a cluster of servers that includes a single head node and one or more compute nodes.

The head node controls and mediates all access to the cluster resources and is the single point of

management, deployment, and job scheduling for the compute cluster. All nodes running in the cluster

must have a 64-bit CPU.

How Does It Work?

Figure. Compute Cluster Topology

As shown in Figure, a user submits a job to the head node. The job identifies the application to run on

the cluster. The job scheduler on the head node assigns each task defined by the job to a node and then

starts each application instance on the assigned node. Results from each of the application instances

are returned to the client via files or databases.

Application parallelization is provided by Microsoft MPI (MSMPI), which supports communication

between tasks running in concurrent processes. MSMPI is a ―tuned‖ MPI implementation, optimized

to deliver high performance on the 64-bit Windows Server OS. MSMPI calls can be placed within an

application, and the mpiexec.exe utility is available to control applications from the command-line.

Because MSMPI enables communication between the concurrently executing application instances,

the nodes are often connected by a high-speed serial bus such as Gigabit Ethernet or InfiniBand.

Development Considerations

To understand the CCS development options, it is important to understand how CCS defines serial

tasks and parallel tasks. All tasks are defined in executables or scripts. All executables must be

command-line applications that do not require user interaction. Serial tasks are tasks that have no need

to communicate with any other tasks. Parallel tasks communicate with the other running application

instances.

Serial Tasks

Serial tasks are executables or scripts that do not communicate with concurrently running application

instances; consequently they can be developed using any Microsoft language and tool.

Parallel Tasks

Parallel tasks are executables or scripts that do communicate with concurrently running application

instances and require MSMPI. A parallel application cannot be written for CCS without MSMPI;

language bindings for MSMPI are available for C++, C, Fortran90, and Fortran77. MSMPI

development is supported in Visual Studio 2005 Professional and Visual Studio 2005 Team. At this

time .NET support for a subset MSMPI functions is provided via a P/Invoke call (which allows a

.NET application to make a COM interface call).

Prof. Pradeep Kumar Shriwas

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 28

4. GRID COMPUTING ON WINDOWS

The Digipede Network is a grid computing solution that provides the advantages of traditional grid

solutions with additional features to simplify job creation and allow developers to grid-enable

applications. The Digipede Network is a grid infrastructure which comprises a server to manage the

system and many agent-nodes to execute the distributed work. The Digipede Server receives all job

requests and maintains a prioritized queue of work to be done, along with a history of work completed

on the system. It also guarantees execution of work on the system by monitoring the status of all

Digipede Agents working on the grid. The Digipede Agent software is installed on each of the grid

compute nodes; it manages that compute node's work on the grid. Although the Digipede Server

receives all the job requests, the Digipede Agent decides what work can be performed on the compute

node. It moves files and data as appropriate, controls the execution of the task, and returns results and

status information. The Digipede Network also includes comprehensive job creation tools, detailed

below.

The Digipede Server runs natively on all editions of Windows Server 2003; the Digipede Agent runs

on any 32-bit or 64-bit Windows operating system since Windows 2000. As a result, the Digipede

Network can be installed quickly and easily onto new or existing networked Windows computers.

How Does It Work?

Figure: Digipede Network Topology

As shown in Figure, a user submits a job to the Digipede Server. The Digipede Agents check in with

the Digipede Server and, if the compute node has the resources required by a job, the Digipede Agent

takes a task. The executable, script, .NET object, or COM server assigned to the task is executed and

the results are returned to the Digipede Server, which then returns the results to the client.

The Digipede Workbench is GUI application that allows users to distribute work without writing

scripts. Using wizards and design forms, the user indicates the files that need to be distributed,

designates input and output files, and sets command line parameters.

Beyond distributing command-line executables, the Digipede Framework SDK is a powerful tool that

allows programmers to add the power of grid computing directly into applications. The Digipede

Framework facilitates the distribution of .NET objects (or COM servers) instead of executables,

allowing a programmatic rather than command-line interaction with the distributed application. With

the Digipede Framework SDK programmers are able to take advantage of programming

methodologies and tools that they are already trained in. The Digipede Framework SDK is described

in more detail in the whitepaper entitled The Digipede Framework™ Software Development Kit

(SDK).

Development Considerations

With the Digipede Network the development considerations are mainly architectural. Command-line

applications and scripts can be written without the Digipede Framework SDK and easily distributed

using the Digipede Workbench or command-line interface.

Applications writing using the Digipede Framework initiate the distribution of work themselves and

can be any type of application: GUI, command-line, or script.

Executables and Scripts

Distributable applications can be written using any Windows development environment and language.

These applications must be command-line applications or scripts that do not require user interaction.

The user can then use the Digipede Workbench to define jobs to quickly and easily distribute

Cloud, Cluster & Grid Computing

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 29

execution. The Digipede Network will distribute the appropriate applications and files and manage

remote execution.

Grid-enabled Applications

Grid-enabled applications require the Digipede Framework SDK and can be written using any

development environment and language that supports COM, .NET 1.1, or .NET 2.0, including all

versions of Visual Studio. Because the Digipede Framework supports existing API methodologies,

Windows developers can quickly and easily grid-enable applications and scripts.

A
p
p
licatio

n

M
aster

F
ram

ew
o

rk

D
ig

ip
ed

e Agent

D
ig

ip
ed

e

F
ram

ew

o
rk

D
ig

ip
ed

e

A
p
p
lication

D
istrib

u
ted

Figure: Digipede Framework Topology

In the client application, the programmer designates the classes that will be distributed. For each task

in the job, the programmer instantiates an object from that class, initializes it, and adds it to the job.

When the job is ready the programmer submits the job to the Digipede Network. Using serialization,

each of the objects (and any assemblies necessary to instantiate it) are moved to the assigned compute

node and deserialized by the Digipede Agent. The Digipede Agent starts the task and, when the work

is completed, returns the object to the Digipede Server which then returns the object to the

application.

 There are many advantages to grid-enabling applications in this fashion:

• Parallelization is accomplished simply by instantiating objects from a class—the developer

does not need to master complex threading schemes. Instead, by creating jobs consisting of

multiple instances of objects, the parallel execution is handled automatically.

• Data is moved natively in the development language. In a typical grid system, all data moved

from a client application to a distributed node must either be written to file or passed on the

command line—a very limiting design restriction. By passing data with an API, the developer

is able to pass data natively in their language of choice.

• Tasks are executed in parallel but the client application is notified via events so the results are

processed serially—this allows for the power of parallel processing but avoids the

complication of complex threading schemes in the client application.

Overview of the Grid Scheduling Problem

A computational Grid is a hardware and software infrastructure that provides dependable,

consistent, pervasive, and inexpensive access to high-end computational capabilities . It is a shared

environment implemented via the deployment of a persistent, standards-based service infrastructure

that supports the creation of, and resource sharing within, distributed communities. Resources can be

computers, storage space, instruments, software applications, and data, all connected through the

Internet and a middleware software layer that provides basic services for security, monitoring,

resource management, and so forth. Resources owned by various administrative organizations are

shared under locally defined policies that specify what is shared, who is allowed to access what, and

under what conditions [48]. The real and specific problem that underlies the Grid concept is

coordinated resource sharing and problem solving in dynamic, multi-institutional virtual

organizations.

From the point of view of scheduling systems, a higher level abstraction for the Grid can be applied

Prof. Pradeep Kumar Shriwas

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 30

by ignoring some infrastructure components such as authentication, authorization, resource discovery

and access control. Thus, in this paper, the following definition for the term Grid adopted: ―A type of

parallel and distributed system that enables the sharing, selection, and aggregation of geographically

distributed autonomous and heterogeneous resources dynamically at runtime depending on their

availability, capability, performance, cost, and users' quality-of-service requirements‖ .

To facilitate the discussion, the following frequently used terms are defined:

• A task is an atomic unit to be scheduled by the scheduler and assigned to a resource.

• The properties of a task are parameters like CPU/memory requirement, deadline, priority, etc.

• A job (or metatask, or application) is a set of atomic tasks that will be carried out on a set of

resources. Jobs can have a recursive structure, meaning that jobs are composed of sub-jobs

and/or tasks, and sub-jobs can themselves be decomposed further into atomic tasks. In this

paper, the term job, application and metatask are interchangeable.

• A resource is something that is required to carry out an operation, for example: a processor

for data processing, a data storage device, or a network link for data transporting.

• A site (or node) is an autonomous entity composed of one or multiple resources.

• A task scheduling is the mapping of tasks to a selected group of resources which may be

distributed in multiple administrative domains.

The Grid Scheduling Process and Components

A Grid is a system of high diversity, which is rendered by various applications, middleware

components, and resources. But from the point of view of functionality, we can still find a logical

architecture of the task scheduling subsystem in Grid. For example, Zhu [123] proposes a common

Grid scheduling architecture. We can also generalize a scheduling process in the Grid into three

stages: resource discovering and filtering, resource selecting and scheduling according to certain

objectives, and job submission [94]. As a study of scheduling algorithms is our primary concern here,

we focus on the second step. Based on these observations, Fig. 1 depicts a model of Grid scheduling

systems in which functional components are connected by two types of data flow: resource or

application information flow and task or task scheduling command flow.’

Fig. A logical Grid scheduling architecture: broken lines show resource or application information flows and
real lines show task or task scheduling command flows.

A cluster is a type of parallel or distributed computer system, which consists of a collection of inter-

connected stand-alone computers working together as a single integrated computing resource [1][5].

The typical architecture of a cluster is shown in Figure 1. The key components of a cluster include

multiple standalone computers (PCs, Workstations, or SMPs), operating systems, high-performance

interconnects, middleware, parallel programming environments, and applications.

Cloud, Cluster & Grid Computing

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 31

Cluster Computing Grid Computing Cloud Computing

Characteristics of Cluster Characteristics of Grid
Characteristic of cloud computing

computing Computing

1: Dynamic computing infrastructure

1:Tightly coupled systems 1: Loosely coupled

2: IT service-centric approach

2: Single system image (Decentralization)

3: Self-service based usage model

3: Centralized Job 2: Diversity and Dynamism

4: Minimally or self-managed platform

management & scheduling 3: Distributed Job Management

5: Consumption-based billing

system & scheduling

In cluster computing, a bunch
In grid computing, the computers

of similar (or identical)

do not have to be in the same

computers are hooked up

physical location and can be In cloud computing, the computers

locally (in the same physical

operated independently. As far as need not to be in the same physical

location, directly connected

other computers are concerned location.

with very high speed

each computer on the grid is a

connections) to operate as a

distinct computer.

single computer

 The memory, storage device and

The computers that are part of a

network communication are managed

The cluster computers all by the operating system of the basic

grid can run different operating

have the same hardware and physical cloud units. Open source

systems and have different

OS. software such as LINUX can support

hardware

the basic physical unit management

 and virtualization computing.

The computers in the cluster Grid are inherently distributed by
Clouds are mainly distributed over

are normally contained in a its nature over a LAN,

MAN

single location or complex. metropolitan or WAN

More than 2 computers are A large project is divided among It does just the opposite. It allows

multiple computers to make use multiple smaller applications to run at

connected to solve a problem

of their resources. the same time.

 Areas of Grid Computing
Areas of cloud Computing

1.Predictive Modeling and

1.Banking

Areas of cluster computing Simulations

2.Insurance

1. Educational resources 2.Engineering Design and

3.Weather Forecasting

2.Commercial sectors for Automation

4.Space Exploration

industrial promotion 3.Energy Resources Exploration

5.Software as a service

3.Medical research 4.Medical, Military and Basic

6.PaaS

Research

7.Infrastructure- as -a-Service

5.Visualization

Commodity computers
High-end computers (servers, Commodity computers and high-end

clusters) servers and network attached storage

Dedicated, high-end with low Mostly Internet with high latency Dedicated, high-end with low latency

latency and high bandwidth and low Bandwidth and high Bandwidth Interconnection

Interconnection Network Interconnection Network
Network

Traditional login/password-

Public/private key pair based

Each user/application is provided with

a virtual machine. High

based. Medium level of authentication and mapping a

security/privacy is guaranteed. Support

privacy depends on user user to an account. Limited

for setting per-file access control list

privileges. support for privacy.

(ACL).

Membership services
Centralized indexing and

decentralized info services Membership services discovery

discovery

discovery

Limited service negotiation
Yes, SLA based service

SLA based service negotiation

negotiation

User management is
User management is

User management is centralized or can

decentralized and also virtual

centralized be delegated to third party

organization (VO)-based

Prof. Pradeep Kumar Shriwas

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 32

Interconnection Technologies and Communication Software

Clusters need to incorporate fast interconnection technologies in order to support high-bandwidth and

low-latency inter-processor communication between cluster nodes. Slow interconnection technologies

had always been a critical performance bottleneck for cluster computing. Today, improved network

technologies help realize the construction of more efficient clusters.

Selecting a cluster interconnection network technology depends on several factors, such as

compatibility with the cluster hardware and operating system, price, and performance. There are two

metrics to measure performance for interconnects: bandwidth and latency. Bandwidth is the amount

of data that can be transmitted over the interconnect hardware in a fixed period of time, while latency

is the time to prepare and transmit data from a source node to a destination node.

With the current popularity of cluster computing, it is increasingly important to understand the

capabilities and potential performance of various network interconnects for clusters. Furthermore, due

to the low cost of clusters and their growing acceptance within the scientific community, many recent

cluster builders are not computer scientists or engineers and thus have limited technical computing

skills. This new group of cluster builders is less interested in features as Network Interface Card

(NIC) programmability and special messaging libraries. Instead, they are concerned with two primary

factors: cost and performance. While cost is easily determined and compared, performance is more

difficult to assess particularly for users who may be new to cluster computing.

5. CONCLUSION

Cloud computing is a new technology of computer network, providing the web services at lower cost

comparing to normal technique. It contributes to improve the services in other related technologies

such as Grid computing, cluster and utility computing. Presently, the security in clouds is less than the

model in grid environment. Clusters and grids solve the problem of performance improvement in

different ways and each has classes of applications which it services better than the other (and, of

course, there is some overlap). However, the true power and flexibility of distributed computing is

realized when the techniques of clusters and grids are combined. As processing power has increased

so have the processing demands of applications. Grid computing and cluster computing provide a

hardware and software infrastructure that significantly increases the processing power available to

applications.

REFERENCES

[1]. Robert W. Lucky May 2009, Reflections Cloud computing, May 2009, IEEE Spectrum.

[2]. Mladen A. Vouk, Department of Computer Science, North Carolina State University, Raleigh,

[3]. C .Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu. loud ―Computing And Grid Computing

360 Degree Compared‖

[4]. Jadeja Yashpal Singh and Modi Kirit (2012) ―Cloud Computing- Concepts, Architecture and

Challenges‖, International Conference on Computing, Electronics and Electrical Technologies

[ICCEET], IEEE

[5]. Buyya Rajkumar, Yeo Chee Shin, Venugopal Srikumar, Broberg

[6]. James and Brandic Ivona, ―Cloud computing and emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th utility‖, Future Generation Computer Systems (2009),

[7]. Gandotra Indu, Abrol Pawanesh, Gupta Pooja, Uppal Rohit and Singh Sandeep (2011) ―Cloud

Computing Over Cluster, Grid Computing: a Comparative Analysis‖, Journal of Grid and

Distributed Computing, pp-01-04

[8]. Raicu Ion (2008), ―Cloud Computing and Grid Computing 360 Computing 360--Degree

Compared‖, Distributed Systems Laboratory, Computer Science Department, University of

Chicago Introduction to Grid Computing, Bart Jacob, Michael Brown, Kentaro Fukui, Nihar

Trivedi; IBM, Red books

[9]. Buyya R., Yeo C. S., Venugopal S., Broberg J., and Brandic I. (2009) Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing the 5th utility, Future

Generation Computer Systems.

[10]. Maria S. Perez. ―Grid and Cloud Computing‖.

Cloud, Cluster & Grid Computing

Proc. of the IRSMT-2015, Bilaspur University, Bilaspur Page | 33

[11]. A. T. Velte, T. J. Velte, and R. Elsenpeter, Cloud Computing-A Practical Approach, The

McGraw-Hill Companies, New York, 2010.

[12]. K. Kaur, and S. Vashisht. ―Data Separation Issues in Cloud Computing‖, International Journal

for Advance Research in Engineering and technology, I (10), pp.26-29, November, 2013.

