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Abstract: In lattice Schrödinger picture, we study the possible effects of trans-Planckian physics on the de 

Broglie-Bohm quantum trajectory of massless conformally coupled scalar field in de Sitter space. Through de 

Broglie’s dynamics, we find that for the Corley-Jacobson type dispersion relations with quartic or sextic 

correction, there exists a transition in the evolution of the quantum trajectory from well before horizon exit to 

near horizon exit, thus providing a mechanism for generating a small cosmological constant. Comparing the 

trans-Planckian effects of both quartic and sextic corrections on the quantum trajectory, we also find that for the 

usual dispersion parameter choice, the latter is smaller than the former. Further, we calculate explicitly the finite 

vacuum energy density due to fluctuations of the inflaton field, and use the backreaction to constraint the 

magnitude of dispersion parameters. Finally, we show that during the slow-roll inflation at the grand unification 

phase transition, the reduction of the cosmological constant  depends on the choice of dispersion parameters.   

Keywords: De Broglie-Bohm quantum trajectory, conformal coupling, inflation, cosmological constant, 

trans-Planckian physics. 

 

1. INTRODUCTION 

In the standard inflationary scenario, usual realization of inflation is associated with a slow rolling 

inflaton minimally coupled to gravity [1]. Nevertheless, it is well known that the extension to the 

non-minimal coupling with the Ricci scalar curvature can soften the problem related to the small value 

of the self-coupling in the quartic potential of chaotic inflation [2].  Further, non-minimal coupling 

terms also can lead to corrections on power spectrum of primordial perturbations [3], a tiny 

tensor-to-scalar ratio [4] and non-Gaussianities [5]. Recently, it was pointed out that inflation with a 

conformally coupled inflaton can be realized as the rapid roll inflation [6, 7]. A broad class of models of 

chaotic inflation in supergravity with an arbitrary inflaton potential was also proposed. In these models 

the inflaton field is non-minimally coupled to gravity [8, 9]. 

Moreover, standard inflationary predictions can have two extensions. The first extension is associated 

with the ambiguity of initial quantum vacuum state, and the choice of initial vacuum state affects the 

predictions of inflation [10, 11]. For example, a deterministic hidden-variables theory such as the de 

Broglie-Bohm pilot-wave theory [12, 13] allows the existence of vacuum states with non-standard or 

nonequilibrium field fluctuations [14, 15], which result in statistical predictions that deviate from those 

of quantum theory in the context of inflationary cosmology [16, 17]. Recent study also shows that the 

quantum-to-classical transition of primordial cosmological perturbations can be obtained in the context 

of the de Broglie-Bohm theory [18].  

The second extension concerns the so-called trans-Planckian problem [19, 20] of whether the 

predictions of standard cosmology are insensitive to the effects of trans-Planckian physics. In fact, 

nonlinear dispersion relations such as the Corley-Jacobson (CJ) type were used to mimic the 

trans-Planckian effects on cosmological perturbations [19-21]. These CJ type dispersion relations can 

be obtained naturally from quantum gravity models such as Horava gravity [22, 23]. Moreover, in 

several approaches to quantum gravity, the phenomenon of running spectral dimension of spacetime 

from the standard value of 4 in the infrared to a smaller value in the ultraviolet is associated with 

modified dispersion relations, which also include the CJ type dispersion relations [24, 25]. These recent 

results suggest that spacetime becomes effectively two-dimensional at super-Planckian energies, and 

all particles are conformally coupled to gravity [26].        
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In the previous work [27-32] we used the lattice Schrödinger picture to study the free scalar field theory 

in de Sitter space, derived the wave functionals for the Bunch-Davies (BD) vacuum state and its excited 

states, found the trans-Planckian effects on the de Broglie-Bohm quantum trajectory of massless 

minimally coupled scalar field for the CJ type dispersion relations, and evaluated the cosmological 

constant in minimal inflation. In this paper we extend the study to the case of massless conformally 

coupled scalar field. 

The paper is organized as follows. In Section 2, the de Broglie-Bohm pilot-wave theory of a generically 

coupled scalar field in de Sitter space is briefly reviewed in the lattice Schrödinger picture, and the de 

Broglie-Bohm quantum trajectories for scalar field are given. In Section 3, we consider the massless 

conformally coupled scalar field during the slow-roll inflation, and use the CJ type dispersion relation 

with quartic or sextic correction to obtain the time evolution of the vacuum state wave functional and 

the corresponding de Broglie-Bohm quantum trajectories. In Section 4, we calculate the finite vacuum 

energy density, use the backreaction constraint to constraint the magnitude of parameters, and                                                             

evaluate the cosmological constant in conformal inflation. Finally, conclusions are presented in Section 

5. Throughout this paper we will set  =c=1. 

2. DE BROGLIE-BOHM PILOT-WAVE THEORY OF SCALAR FIELD IN SCHRÖDINGER PICTURE    

In this section, we begin by briefly reviewing how to define the de Broglie-Bohm pilot-wave theory of 

scalar field in de Sitter space in the lattice Schrödinger picture (for the details see [31]). The Lagrangian 

density for the scalar field we consider is 
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In the (1+d)-dimensional de Sitter space we have )exp()( htta  , where aah /  is the Hubble 

parameter which is a constant.  

For d=1, in the lattice Schrödinger picture, we obtain from (2) the time-dependent functional 

Schrödinger equation in momentum space  
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Here    Nl
l
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p  is the conjugate momentum for 

l
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denote the real and imaginary parts respectively. 
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Note that (8) arises from the field quantization of the Hamiltonian (5) through the functional 

Schrödinger representation 
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For d=3, we get from equations (3)-(8) in the continuum limit ( k
l
 )  
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and the de Broglie-Bohm velocity field 
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and the de Broglie-Bohm velocity field  
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Here,   is interpreted as a physical field in field configuration space, guiding the evolution of 
rk

  

through (13) and (17). Substituting (12) into (17) and using   gives  

 
rk

rk

kH

kH

k
d

d














)(

)(

)1(

)1(


 ,                                                      (18) 

which yields the quantum trajectory 
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phys

/  to the inverse of 

Hubble radius, and C  is an integration constant. 

3. TRANS-PLANCKIAN EFFECTS 

In this section we consider the massless conformally coupled ( 2/1 ) scalar field in the slow-roll 

inflation. To study further the effects of trans-Planckian physics, we use the CJ type dispersion relations 
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where M  is a cutoff scale, s  is an integer, and 
s

b  is an arbitrary coefficient [18-20].  
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3.1. CJ Type Dispersion Relation with Quartic Correction 

We first focus on the CJ type dispersion relation (20) with 1s  and 0
1
b . Notice that this CJ type 

dispersion relation can be obtained from theories based on quantum gravity models [22-25].  

3.1.1. Evolution of Vacuum Wave Functional 
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where the prime in (26) denotes the derivative with respect to 2/
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Then we have  
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3.1.2. De Broglie-Bohm Quantum Trajectory 

In Section 2, we defined the pilot-wave scalar field theory through de Broglie‟s first-order dynamics 

(13) and (17). Using the results about the evolution of vacuum wave functional in previous subsection, 
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 ,                                              (40) 

2

)0(

2

)0(
2

1

rkrk

Q




 


  ,                                                         (41) 

where 
(0)

  is given by (22)-(24) and 
(0)

  is given by the continuum limit of (11) for 0
rl

n . Note 

that Bohm‟s dynamics in general yields more possible quantum trajectories than de Broglie‟s dynamics 

does [30], and this distinction between Bohm‟s and de Broglie‟s dynamics was also emphasized 

recently by Valentini [33]. This is what we expect, because Bohm regarded (39) as the law of motion, 

with the de Broglie guidance equation (17) added as a constraint on the initial momenta.  

However, recently it was pointed out that Bohm‟s dynamics is unstable. Small deviations from initial 

quantum equilibrium do not relax and instead grow with time [34]. On the other hand, de Broglie‟s 

dynamics is a tenable physical theory. Therefore, we will investigate the quantum trajectories of 

scalar field through de Broglie‟s dynamics hereafter.      

In region I, from (25) and (26) we have 

 

4

2

1

4
),(

2
)1(

4/1

2
I1

2
)1(

4/1

2
)1(

4/1
I

)0 (



 















d

H

za

H

H
k

rkrk
,                            (42) 

where   
2

2)1(

1/4
2/zH     2422

/48/31/4 zzz    , and the prime in (42) denotes the 

derivative with respect to 2/
2

z . Substituting (42) into (17) and using adtd /  and 

ahkkz /   gives  

I

I

rk

rk

z

k

d

d





 .                                                                 (43) 

The general solution of (43) is 

1II

)(


 zCz
rk

 .                                                                 (44) 

On the other hand, in region II, from (27) and (28) we have 
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 ),(
II

)0 (


rk

 

   



 d

H

a

H

H
k

md

rk

md

md








2)1(

2/1

2
II1

2)1(

2/1

2)1(

2/1

2

2

1

4
,                        (45) 

where 
md

H
)1(

2/1
 means 

)1(

2/1
H  modified according to 

md

H
)1(

2/1
     

2/1
2

)1(

2/121

2
)1(

2/1

2

2

2

1
Re2












HCCHCC ,  

zzH /2)(
2

)1(

2/1
  , and the prime in (45) denotes the derivative with respect to z . Note that in 

region II, 
md

H
)1(

2/1
 becomes  

 
2

II

2

2
II

1

)1(

2/1

)1(

2/1
CCHH

md

























22

2

II

2

II

1

1

2
)2sin(

1

1
)2cos(2

z

z
z

z

z
zCC  ,    (46)  

which reduces to 
)1(

2/1
H  for 1

c
zz  (well before horizon exit) by using (33). Substituting 

(45) into (17) and using adtd /  and ahkkz /   gives 

 
II

II

2
rk

rk

z

k

d

d





 .                                                              (47) 

The general solution of (47) is 

 
2/1IIII

)(


 zCz
rk

 .                                                             (48) 

Then, substituting (44) and (48) into the matching condition at 
c

z  for 
I

rk
  and 

II

rk
  

CC
ZrkZrk

III

  ,                                                                (49) 

We obtain 

2/1III 


c

zCC .                                                                 (50) 

Furthermore, for 1z (near horizon exit), (46) also approximately reduces to 
)1(

2/1
H  by using (37) 

and 1
c

z , and the solution of (17) becomes 

2/1IIII

)(


 zCz
rk

 .                                                              (51) 

Since for d=3 
rk

  contains a factor 
2/3

a  which is proportional to 
2/3

z , we use a field redefinition 

rkrk
au 

2/3
 , 

1
)/(


 zhka , and (50) to rewrite (44) and (51) as 
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2/1I

2/3

I

zC
h

k
u

rk











 , zzC

h

k
u

crk

2/1I

2/3

II 











 .                                    (52) 

Thus we see from (44) and (51) that for fixed k  and 1
c

z , as z  decreases from 1
c

zz  

to 1z , the scalar field decreases from one large value to a much smaller value which is a factor 

c
z/1  less than the field value at 

c
zz  , i.e., there exists a transition in the time evolution of the 

quantum trajectory of scalar field. 

3.2. CJ Type Dispersion Relation with Sextic Correction 

In this subsection, we consider the CJ type dispersion relation (20) with 2s  and 0
2
b , and 

repeat the preceding calculations for this type dispersion relation. 

3.2.1. Evolution of Vacuum Wave Functional 

For this case, only (21), (24), and (26) are changed into 

  



}

4

1
1

2

1

2

1
{

222422

2

2

rk

rkrk

hhzz
t

i




















 ,                                  (53) 

0
4

1
)1(

)()(
)(

2

4222


































 zk

B

d

dB
iB

kk

k
,                              (54) 

2

2
)1(

6/1

2
)1(

6/1

2
)1(

6/1

I

2

6

)( z

H

H
k

i

H

B
k

















 ,                                           (55) 

where 
4

2

2
)/( Mhb , and the prime in (55) denotes the derivative with respect to  

3/
3

z .Using      3623
2

3)1(

1/6
/6/11/63/ zzzzH    with 

2


c

z , 

hbMkz
cc

4/1

2
/  >>1 for 1~

2
b , and zzH /2)(

2
)1(

2/1
 , we obtain from (55),(28),and (31) 

)-2cos(21
II

2

II

1

2
II

2

2
II

1


c
zCCCC  ,                                          (56) 

 
c

zC 2csc
II

1
 , )2cot(

II

2


c
zC ,                                       (57) 

where 0)2sin(  
c

z  and 0)2cos(  
c

z . Substituting (55) and (28) into (32) and keeping 

terms up to order 
c

z/1  on the right-hand side of (32), we find  

 
c

c

zCC
z

2sin4
2 II

2

II

1
.                                                    (58) 

Using (34) in (58) gives 

c

c

z
z

2

1
)2cot(   .                                                           (59) 
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Then we have 

  
c

z
C

2

1II

2
 , 1

8

1
11

2

2
II

2

II

1


c
z

CC ,                                   (60) 

or                 

1)2sin(  
c

z , 
c

c

z
z

2

1
)2cos(   .                                           (61) 

3.2.2. De Broglie-Bohm Quantum Trajectory 

In region I, from (25) and (55) we have 

 

6

2

1

4
),(

2
)1(

6/1

2
I12

2
)1(

6/1

2
)1(

6/1
I

)0 (



 















d

H

az

H

H
k

rkrk
,                           (62) 

where      3623
2

3)1(

1/6
/6/11/63/ zzzzH    , and the prime in (62) denotes the 

derivative with respect to 3/
3

z .Substituting (62) into (17) and using adtd /  and 

ahkkz /   gives 

I

I

2

3

rk

rk

z

k

d

d





 .                                                                (63)  

The general solution of (63) is 

 
I I 3 / 2ˆ( )

rk
z C z


 .                                                              (64) 

On the other hand, in region II, from (27) and (28) we have the same general solution as (48) for 

1
c

zz  

2/1IIII ˆ)(


 zCz
rk

 .                                                               (65) 

Substituting (64) and (65) into the matching condition at 
c

z  for 
I

rk
  and 

II

rk
  

CC
ZrkZrk

III

  ,                                                               (66) 

we obtain 

1III ˆˆ 


c

zCC .                                                                  (67) 

Furthermore, for 1z (near horizon exit), (46) also approximately reduces to 
)1(

2/1
H  by using (37) 

and 1
c

z , and the solution of (17) becomes 

2/1IIII ˆ)(


 zCz
rk

 .                                                              (68) 

Since for d=3 
rk

  contains a factor 
2/3

a  which is proportional to 
2/3

z , we use a field redefinition 



Evaluation of the Cosmological Constant from de Broglie Pilot-Wave Dynamics: Inflation with 

Conformal Coupling 

 

International Journal of Advanced Research in Physical Science (IJARPS)                        Page 28 

rkrk
au 

2/3
 , 

1
)/(


 zhka , and (67) to rewrite (64) and (68) as 

I

2/3

I

Ĉ
h

k
u

rk











 , zzC

h

k
u

crk

1I

2/3

II ˆ 











 .                                         (69) 

Thus we see from (64) and (68) that for fixed k  and 1
c

z , as z  decreases from 1
c

zz  

to 1z , the scalar field decreases from one large constant to a much smaller value which is a factor 

c
z/1  less than the field value at 

c
zz  , i.e., there exists a transition in the time evolution of the 

quantum trajectory of scalar field. 

Comparing (52) with (69) for scalar field, we find that for 1~
21

bb  ,
cc

zz  1 ,we have 

2/1IIˆ
c

zCC  , 
IIIIˆ CC   and  as z  decreases from 1

cc
zzz  to 1z , the former is 

larger than the latter by a factor 
2/1

)/(
c

zz  during the early (
c

zz  ) evolution of the quantum 

trajectory of scalar field. Therefore, if we compare the trans-Planckian effects of both quartic and 

sextic corrections on the quantum trajectory, the latter is smaller than the former. 

4. VACUUM ENERGY, BACKREACTION AND COSMOLOGICAL CONSTANT  
Using the results of Section 3, we now proceed to calculate the finite vacuum energy density, use the 

backreaction to constraint the parameters in nonlinear dispersion, and evaluate the cosmological 

constant. Note that in the slow-roll approximation, the energy density of the scalar field is )(


V , 

where the potential 
22

)(  hV  . Thus the relation between the expectation value of the vacuum 

energy density 


  and the vacuum wave functional 
)0(

 in (22) is 

)0()0(





22

)0(

32
),(

rk

rk

rkrkrk
uuduh  






   

3

1

3

3

2

))(Re(

1

2

1

8

1 

 a
aB

kdh

k


  

dka
aB

kh

k

3

1

2

2

2

))(Re(

1

2

1

2

1 




,                                               (70) 

where we use a field redefinition 
rkrk

au 
2/3

 , 

   ,))(R e (e x p
))(R e (

),(
3

2

1

1

2/3
2

)0( 




















a

u
aB

aB
au

rk

k

k

rkrk





                     (71) 

))(Re(
1

aB
k
  denotes the real part of 

1
)(


aB

k
 , and the factor 

2/3
a  in (71) appears through the 

normalization condition 

1),(
2

)0(







rkrkrk

udu .                                                        (72) 
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For 1s  and 0
1
b , in region I, we have  

2
2)1(

1/4
2/zH   

2
/4 z  with 

1


c

z . Then, 

using hzkha //1    and (20) in (70), we obtain  




I

1s


 )1(
4

1

4

1 24

2

4

2
 





c

z

z

c
zhdzzh

c

c

,                                         (73) 

where hbMz
c

2/1

1
/  and hMz

Plc
/  (here 

Pl
M 

 2/1
G

19
1022.1  GeV is the Planck 

mass) are the boundaries of the interval of integration. On the other hand, in region II, (28) can be 

expressed as 

 
 

2)1(

2/1

2)1(

2/1

2)1(

2/1

II

2

2

)(

md

md

md

k

H

H
k

i

H

B






 ,                                            (74) 

where 
md

H
)1(

2/1
is defined as  

 
md

H
)1(

2/1
  

2/1
2

)1(

2/1

II

2

II

1

2
)1(

2/1

2
II

2

2
II

1
Re2





















HCCHCC ,                     (75)    

with 
z

zH


2
)(

2
)1(

2/1
 . From (33), (37), and (38), we notice that 

md

H
)1(

2/1
 can be approximated 

by 
)1(

2/1
H  as z  decreases from 1

c
zz  to 1z (horizon exit). Then, using 

hzkha //1    and (28) in (70), we obtain 




II

1s


  









c
z

c
zhzdzh

1

24

2

4

2
2

1

2

1

4

1

4

1


.                                        (76) 

From (73) and (76) we have 


1s


 



I

1s


 


II

1s














2

1
)

2

1
(

4

1 24

2



c

zh .                               (77)  

For 1
c

z  and 1)/(
2/1

1
 MMb

Pl
 , (77) becomes 


1s


 )

2

1
(

4

1 24

2



c

zh .                                                      (78) 

From (78) we see that there is no back reaction problem if the energy density due to the quantum 

fluctuations of the inflaton field is smaller than that due to the inflaton potential  

)(
1




V
s




.                                                                 (79) 
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In the slow-roll approximation, using  8/3)(
22

hMV
Pl

  and (78) in (79) gives the constraint on 

the parameter 
1

b  as 

2

21

9

4
















Pl
M

M
b


. For

16
10~M GeV (the energy scale during inflation), we 

have 
8

1
100.3


b . 

For 2s  and 0
2
b , in region I, we have  

2
3)1(

61/ 
3/zH 

3
/6 z  with

2


c

z . Then, using 

hzkha //1    and (55) in (70) we obtain 




I
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

 
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

ln
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1 24

2

24
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z

z
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z
zh

c

c

 ,                                       (80) 

where hbMz
c

4/1

2
/  and hMz

Plc
/  are the boundaries of the interval of integration. On the 

other hand, in region II, (28) can be again expressed as (74) with 
md

H
)1(

2/1
 defined by (75). From 

(58), (62), and (63), we also notice that 
md

H
)1(

2/1
can be approximated by 

)1(

2/1
H  as z  decreases 

from 1
c

zz  to 1z .  

Then, using hzkha //1    and (55) in (70), we obtain 
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24
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1
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1
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.                                        (81) 

From (80) and (81) we have 
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zh .                             (82)  

For 1
c

z  and 1)/(
4/1

2
 MMb

Pl
 , (82) becomes 


 2s


 )

2

1
ln(

4

1 24

2



c

zh .                                                   (83) 

Moreover, we see that there is no back reaction problem if 

)(
2

 V
s




.                                                                 (84) 

Using  8/3)(
22

hMV
Pl

  and (83) in (84) gives the constraint on the parameter 
2

b  as 

24

22 
)

2

1
(ln)(

9

4
 


Pl

M

M
b . For 

16
10~M GeV, we have 

2
b

3
105.8


 . 
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Comparing (78) with (83), we find that 
 2s




1s


  if the inequality 
22

)2/1(ln
cc

zz  , 

or  
12

2

/)//()2/1ln( bbMM
Pl

  is satisfied. For example, the usual parameter choice 

1~~
21

bb  satisfies the inequality. On the other hand, we have 
 2s




1s


  if the inequality 


22

)2/1(ln
cc

zz  , or  
12

2

/)//()2/1ln( bbMM
Pl

  is satisfied. For example, the 

parameter choice 
4

1
10~b  and 

2

2
10~


b  satisfies the inequality. 

In the case that 
1s


  is larger than 

2s


 , using (78) in the cosmological  constant 

2

/8
Plvac

M  gives 















Pl
M

M

b

h

2/1

1

2
2


, which is 

24
102 .5  GeV

2
 for 1~

1
b , 

16
10~M GeV, 

14
10~h GeV  and 

28
107.1  GeV

2
 for 

7

1
10~


b , 

16
10~M GeV, 

14
10~h GeV.  

In the case that 
2s


  is larger than 

1s


 , using (83) in 
2

/8
Plvac

M  gives 


























2

1
ln

2
2

2/1

2

2




Pl
M

M

b

h
, which is 

22
103.3  GeV

2
for 1~

2
b , 

16
10~M GeV, 

14
10~h GeV and 

23
108.2  GeV

2
 for 

2

2
10~


b , 

16
10~M GeV, 

14
10~h GeV. 

5. CONCLUSIONS   

In the lattice Schrödinger picture, we have considered the de Broglie-Bohm pilot-wave theory of a 

generically coupled free real scalar field in de Sitter space. To investigate the possible effects of 

trans-Planckian physics on the quantum trajectory of the vacuum state of scalar field, we focused on the 

massless conformally coupled scalar field in the slow-roll inflation, and considered the CJ type 

dispersion relation with quartic or sextic correction. 

We find that there exists a transition in the evolution of the quantum trajectory from well before horizon 

exit to near horizon exit, providing a possible mechanism for generating a small cosmological constant. 

Moreover, we find that for the usual dispersion parameter choice, if we compare the trans-Planckian 

effects of both quartic and sextic corrections on the quantum trajectory, the latter is much smaller than 

the former. Note that these results about the quantum trajectory also appeared in the case of massless 

minimally coupled scalar field for CJ type dispersion relations with quartic or sextic corrections [32]. 

Finally, we calculate explicitly the finite vacuum energy density due to fluctuations of the inflaton field, 

use the backreaction to constraint the magnitude of parameters in nonlinear dispersion relation, and 

show how the corresponding cosmological constant reduces during the slow-roll inflation at the grand 

unification phase transition.  
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